
 

< 51 > *Corresponding Author: Radhika Patwardhan 

 
 
 
 
 
 
 
 
 

Use of Learned Data Structures in Machine Learning and AI Algorithms 
1Rishik Jariwala and *2Radhika Patwardhan 

1Student, Diploma in Information Technology, SVKM,s Shri Bhagubhai Mafatlal Polytechnic & College of Engineering, Vile Parle, Mumbai, 
Maharashtra, India. 

*2Professor, Faculty in Information Technology, SVKM,s Shri Bhagubhai Mafatlal Polytechnic & College of Engineering, Vile Parle, Mumbai, 
Maharashtra, India. 

 
 

Abstract 
The rapid growth of modern data has driven a shift from static storage designs to intelligent, data-aware architectures. Traditional 
storage systems struggle with the sparse and high-dimensional data used in AI, creating the need for advanced solutions such as 
multidimensional indexing, sparse tensors, and graph-based frameworks. This evolution introduced learned data structures, which 
apply machine learning to predict data locations by modeling underlying data distributions. Predictive indexes like the PGM-index 
and Recursive Model Index replace rigid tree structures, significantly improving memory efficiency and search performance.[2] 
However, these advances also demand changes in data science education. Academic curricula are moving away from outdated 
procedural languages toward flexible platforms like Python, enriched with real-world case studies from distributed systems and 
search technologies. Hands-on, multi-level experimental environments prepare students to manage large-scale data effectively. 
Integrating predictive storage architectures with modern teaching approaches equips future professionals to handle today’s 
complex and data-intensive information landscape efficiently. 
 
Keywords: Data-aware architectures, learned data structures, machine-learning indexing, PGM-index, Recursive Model Index, 
sparse high-dimensional data. 

 
 

1. Introduction 
The rapid growth of large-scale, high-dimensional data is 
driving a structural shift in high-performance computing and 
data management. Traditional data structures, designed for 
static and general-purpose workloads, struggle to meet the 
efficiency requirements of modern machine learning and AI 
systems. To address these limitations, specialized 
architectures such as sparse tensors and graph frameworks 
have emerged alongside learned data structures that integrate 
machine learning into world,  
• Inability to exploit data-specific patterns, leading to 

suboptimal time and space efficiency. 
• Poor handling of sparse data, causing unnecessary 

memory usage and slower computation. 
• High procedural overhead in structures such as B-trees 

due to repeated comparisons. 
• Lack of predictive logic for faster data. 
 
2. Limitations in Traditional Data Structures  
Conventional data structures are increasingly inadequate for 
modern AI and ML workloads due to their rigid and general-
purpose design. These frameworks struggle to efficiently 

handle large-scale, high-dimensional, and sparse datasets 
commonly used in intelligent systems. Key limitations 
include: 
• Indexing as Regression: Search is modeled as learning 

the data’s cumulative distribution function (CDF). 
• Predictive Search: ML models predict key positions, 

reducing comparison overhead. 
• Error Correction: Local binary or exponential search 

handles prediction inaccuracies. 
• Key Architectures: Recursive Model Index (RMI), 

PGM-index, ALEX, and Learned Bloom Filters. 
• Performance Trade-offs: Significant speed and memory 

gains, but sensitivity to data distribution changes remains 
a challenge. 

 
3. Learned Data Structures (Concept) 
i). Learned Data Structures (LDS) represent a paradigm shift 

in data management by integrating machine learning 
models into traditional indexing and storage logic.[1 
Scope of the Study. 

ii). Predictive Search: Key positions are estimated, 
minimizing traversal and comparisons. 

International Journal of Research 
in Academic World 

Received: 04/December/2025  IJRAW: 2026; 5(1):51-53  Accepted: 09/January/2026 

Impact Factor (QJIF): 8.47  E-ISSN: 2583-1615, P-ISSN: 3049-3498 



 

< 52 > 

https://academicjournal.ijraw.com IJRAW 

iii). Error Correction: Local binary or exponential search 
compensates for model inaccuracies. 

iv). Hierarchical Models: Recursive Model Index (RMI) 
routes queries through layered models. 

v). Piecewise Models: PGM-index and FITing-tree 
approximate distributions with bounded error [2]. 

vi). Dynamic Indexing: ALEX supports updates and 
adaptive restructuring for evolving datasets [4]. 

 
4. Predictive Indexing Techniques 
Predictive indexing replaces comparison-based search with 
model-driven estimation of data locations by learning 
underlying data distributions. Instead of traversing static trees, 
these techniques predict the position of keys directly, enabling 
faster access and reduced memory usage.  
Some Techniques are: 
• Regression-Based Indexing: Indexes are modeled as 

regression functions that learn the CDF or rank of keys.[1] 
• Predictive indexing using CDF-based regression models. 
• RMI, PGM-index, and ALEX for efficient and adaptive 

data access. 
• Learned Bloom Filters for space-efficient membership 

testing [3]. 
• Learned Count-Min sketches for accurate frequency 

estimation. 
• Performance gains with sensitivity to data distribution 

changes. 
 
5. Learned Data Structures in ML 
Learned data structures play a significant role in modern 
machine learning systems by replacing generic, rule-based 
logic with data-aware predictive models. Instead of relying on 
fixed comparison strategies, these structures learn statistical 
patterns in data to optimize access, storage, and computation. 
By modeling indexes as regression problems, LDS improve 
efficiency in ML pipelines where large-scale, dynamic 
datasets are common. Their integration enhances training 
speed, inference latency, and memory utilization, making 
them well suited for AI-driven workloads.  
Some key applications and mechanisms include: 
• Computer Vision & Spatial AI: Predictive indexing 

enhances nearest-neighbor search, outperforming KD-
trees and R-trees. 

• Natural Language Processing: Trie-based and learned 
inverted indexes improve string matching and query 
retrieval. 

• Web Intelligence: Learned Bloom Filters reduce 
memory usage for large-scale membership testing.[3] 

• Network Traffic Analysis: Learned Count-Min sketches 
accurately detect frequent data patterns. 

• System-Level AI: Predictive models optimize operating 
systems and query planners for autonomous 
infrastructure [5]. 

 
6. Application in Artificial Intelligence  
Learned and specialized data structures have become integral 
to artificial intelligence systems, enabling faster data access, 
efficient memory usage, and intelligent decision-making 
across diverse domains. By embedding predictive logic into 

storage and retrieval mechanisms, AI applications can scale 
effectively with massive and complex datasets. 
Some major applications include: 
• Memory Efficiency: Learned indexes can be orders of 

magnitude smaller than B+-trees; sparse tensors and 
learned Bloom filters further reduce space usage [2]. 

• Latency Improvements: Predictive indexing achieves 
1.5–3× faster lookups by replacing multi-level searches 
with model predictions. 

• Inference Overhead: Model execution introduces 
latency compared to simple hash functions. 

• Accuracy vs Guarantees: Performance depends on data 
distribution, requiring correction mechanisms. 

• Training Cost: Learned structures incur additional 
training and maintenance overhead.  

 
7. Performance Benefits and Tradeoffs 
Learned and specialized data structures offer notable gains in 
storage optimization and data retrieval efficiency; however, 
these gains come with trade-offs in robustness and 
computational overhead. Their effectiveness depends on 
workload characteristics, data stability, and  
• Robustness Gaps: Performance degrades when query 

distributions shift from training data [6]. 
• Dynamic Updates: Insertions and deletions require 

retraining, adding computational overhead [4, 6]. 
• Inference Latency: Model execution is slower than 

traditional hash functions. 
• Algorithmic Limits: Efficient handling of variable-

length keys remains unresolved. 
• Security Risks: Learned structures are vulnerable to 

adversarial input patterns. 
• Educational Gap: Traditional curricula lag behind 

industry-scale, data-aware architectures. 
 
8. Challenges and Open Research Issues 
Despite their advantages, learned data structures face several 
technical, practical, and educational challenges that limit 
widespread adoption. These issues define the active research 
frontier in data-aware systems.  
• Dependence on Data Distribution: Learned structures 

rely heavily on training data. Performance may degrade 
when query or data distributions shift significantly. 

• Dynamic Updates and Retraining: Insertions and 
deletions often require model retraining or structural 
reorganization, increasing computational overhead. 

• Inference Latency: Model-based predictions can 
introduce higher latency compared to traditional hash 
functions or tree traversal methods. 

• Limited Support for Variable-Length Keys: Most 
current learned models are designed for fixed-length 
keys, making extension to variable-length data an open 
research problem. 

• Algorithmic Limits: Efficient handling of variable-
length keys remains unresolved. 

• Security Risks: Learned structures are vulnerable to 
adversarial input patterns. 

https://academicjournal.ijraw.com/


 

< 53 > 

https://academicjournal.ijraw.com IJRAW 

 
 

Fig 1: Performance comparison of learned data structures. 
 

9. Conclusion 
This project demonstrates how learned data structures can be 
effectively integrated into machine learning and AI systems to 
improve data access efficiency beyond traditional indexing 
methods. By organizing data in a hierarchical manner and 
using learned models to approximate data distributions at 
different results, the system achieves faster query 
performance and better adaptability to real-world data 
patterns. Unlike classical data structures that rely on rigid 
rules and worst-case guarantees, learned data structures 
exploit statistical regularities in data, making them well suited 
for modern, data-intensive AI applications. The study shows 
that combining machine learning models with indexing 
mechanisms can significantly enhance the quality. 
 
References 
1. Kraska T, Beutel A, Chi EH, Dean J, Polyzotis N. The 

Case for Learned Index Structures. Proceedings of the 
2018 International Conference on Management of Data 
(SIGMOD). 2018. 

2. Ferragina P, Vinciguerra G. The PGM-Index: A Fully-
Dynamic Compressed Learned Index with Provable 
Worst-Case Bounds. Proceedings of the VLDB 
Endowment. 2020. 

3. Mitzenmacher M. A Model for Learned Bloom Filters. 
Proceedings of the 2018 IEEE Conference on Data 
Compression. 2018. 

4. Ding J, Chen U, Wei V. ALEX: An Updatable Adaptive 
Learned Index. Proceedings of the 2020 ACM SIGMOD 
Conference. 2020. 

5. Marcus R, Negi P, Mao H, Tatbul N, Kraska T. Neo: A 
Learned Query Optimizer. Proceedings of the VLDB 
Endowment. 2019. 

6. Bu S, Howe B, Balazinska M, Ernst MD. HAWK: 
Efficiently Supporting Ad Hoc Analytics on Evolving 
Data. Proceedings of the VLDB Endowment. 2010. 

https://academicjournal.ijraw.com/

