

International Journal of Research in Academic World

Received: 29/September/2025

IJRAW: 2025; 4(11):219-223

Accepted: 13/November/2025

Emotion Detection and Emoji Display

¹Shreya Vivek Chunarkar and ²Dr. Lenina SVB

¹Student, 3rd Year, Department of Electronics and Telecommunication, SGGSIE&T, Vishnupuri, Nanded, Maharashtra, India.

²Faculty, Department of Electronics and Telecommunication, SGGSIE&T, Vishnupuri, Nanded, Maharashtra, India.

Abstract

Emotion recognition through facial expressions significantly enhances Human-Computer Interaction by allowing machines to interpret and respond to human emotions in real-time. This paper presents a robust Emotion Detection and Emoji Display System that utilizes live facial input from a camera to analyze facial features. The system identifies emotions such as happiness, sadness, anger, surprise, and neutrality by employing pre-trained recognition models. Detected emotions are then visualized using corresponding animated or static emojis on the user interface, fostering intuitive user interactions.

The model is built on advanced computer vision techniques and a lightweight deep learning framework, ensuring high accuracy and low latency in emotion classification. Focused on user-centric design, the system promotes real-time performance, scalability, and seamless integration into interactive applications. Experimental findings demonstrate the system's effectiveness in various lighting conditions and face orientations. The potential applications of this research are extensive, spanning across education, mental health monitoring, social robotics, gaming, and diverse digital communication platforms.

Keywords: Emotion Detection, Facial Expression Recognition, Computer Vision, Deep Learning, Convolutional Neural Networks (CNN), Real-Time Processing, Human-Computer Interaction (HCI) etc.

1. Introduction

Human emotion recognition is essential for effective communication and social interaction, prompting interest in machine interpretation of emotions within Human-Computer Interaction. Traditional interaction methods are inadequate for conveying emotional expressiveness, leading to the development of affective computing, which allows systems to detect and respond to human emotions in real time, thereby improving user interaction.

Facial expression recognition serves as a non-invasive method for identifying emotions, utilizing facial cues that convey significant emotional information. The integration of advanced technologies like computer vision and deep learning has enhanced the accuracy and reliability of these recognition systems. Techniques such as convolutional neural networks (CNN), facial landmark detection, and detailed image processing contribute to better classification of emotional states in various contexts.

Furthermore, emojis function as a universal language for expressing emotions in digital communication. By correlating detected emotions with specific emojis, an intuitive feedback mechanism is established to enrich user experiences across platforms like social media, mental health applications, gaming, and assistive technologies. A real-time emotion detection system leverages cameras to capture facial

expressions, classifying emotions using machine learning and dynamically linking them to visual emoji representations on user interfaces.

The paper is prepared and presented as follows: Section II outlines the foundation of emotion detection systems, focusing on facial expression recognition, computer vision, deep learning (CNN), and real-time processing. Section III details the methodology for the Emotion Detection and Emoji Display System, including data acquisition, image preprocessing, CNN model, emotion-to-emoji mapping, GUI design, and system workflow. Section IV analyzes the system's experimental setup, evaluating performance metrics such as accuracy and response speed. Section V suggests future enhancements, including multi-face tracking and mobile integration. Finally, Section VI summarizes the research outcomes and proposes future directions in human-computer interaction and affective computing.

2. Literature Review

The literature on real-time emotion recognition through facial expressions encompasses a broad array of studies. This review focuses on foundational theories and datasets, traditional versus deep-learning approaches, challenges in real-time systems, and the mapping of emotions to intuitive outputs such as emojis.

- i). **Foundational Theories and Datasets:** Paul Ekman's early research identified six basic emotions, which are fundamental in understanding human emotional communication. His development of the Facial Action Coding System (FACS) aids in encoding facial movements. Key benchmark datasets like FER2013 and CK+ are commonly utilized for training and testing models. However, these datasets have limitations related to artificial lab conditions and variability in elements like lighting, pose, and identity, complicating real-world applicability.
- ii). **Traditional vs. Deep-Learning Methods:** Initial emotion recognition systems relied on handcrafted features and classical classifiers. The rise of deep learning, particularly with Convolutional Neural Networks (CNNs) such as VGG-19, ResNet-50, and MobileNet, has led to improved accuracy and generalization. Despite the advantages, challenges such as overfitting, due to small training datasets, and biases related to lighting and identity persist. Moreover, multimodal approaches that incorporate visual, audio, and physiological signals are becoming more prominent, although this study focuses solely on facial visual inputs.
- iii). **Real-Time Systems and Practical Challenges:** Real-time systems face specific constraints like computational latency, robustness across varied lighting, face detection and tracking, and the need for responsiveness to live camera inputs. Research indicates that algorithms performing well with static images may falter in dynamic settings, particularly with occlusions and non-frontal faces. Effectively localizing and tracking faces, handling head movements, ensuring low processing latency, and maintaining lightweight models are crucial challenges.
- iv). **Mapping Emotions to Visual Feedback (Emojis):** While enhancing classification accuracy dominates the literature, fewer studies address the interface feedback in representing detected emotions through emojis. In digital communication and education, visual representation of emotions can significantly enhance user experience. This work seeks to improve understanding of how recognized emotions can be represented as emojis, aiming for responsive, interpretable, and effective UI feedback.
- v). **Gaps and Opportunities:** A review reveals gaps in model generalization to uncontrolled environments, the need for lightweight designs for real-time deployment, poor integration of recognition systems with visual feedback, and a lack of user-centric evaluations in emotion feedback systems. Consequently, the proposed system will focus on real-time facial emotion detection with emoji outputs, promoting a robust yet lightweight architecture suitable for diverse conditions and improved user feedback.

3. Methodology

The proposed emotion recognition system processes facial data captured either through a live camera feed or uploaded images, visually representing predicted emotions with emojis.

A). Data Acquisition

- i). **Live Camera Feed:** Utilizing the OpenCV library, the system captures real-time images from webcams, continuously grabbing frames at a rate of 20 to 30 frames per second. This allows for dynamic monitoring of emotional changes through continuous visual input rather

than static images. The system is designed to handle various factors like facial orientation and lighting changes while operating asynchronously, ensuring a responsive user interface. This capability is beneficial for applications seeking instant emotional feedback, enhancing real-time emotional monitoring.

- ii). **Image Upload Option:** Users can also upload facial images in formats such as .jpg, .jpeg, and .png. This feature accommodates scenarios where webcam access is limited or when static images are preferred for emotion analysis. The uploaded images undergo the same processing as live video input, including face validation and emotion prediction, while maintaining their original quality.

B). Pre-processing

Facial data undergoes structured preprocessing to streamline compatibility and reliability. This includes transforming color formats from BGR to RGB using OpenCV for neural network compatibility, resizing images to a standard resolution to enhance processing efficiency, and implementing a non-strict detection mode to maintain functionality under poor visibility conditions. Moreover, managing frame processing intervals is crucial to prevent bottlenecks, ensuring a stable and smooth user interface while maintaining real-time emotional output.

C). Emotion Detection Engine

The emotion recognition unit is crucial in systems that decode facial visual input into classifications of human emotions. It employs an automated deep learning approach via the DeepFace framework, utilizing state-of-the-art CNN models pretrained on extensive datasets of facial expressions, thereby moving away from traditional methods reliant on manually crafted features. Unlike conventional approaches that involve handcrafted descriptors like eye width or lip curvature, the CNN performs automated feature extraction, learning hierarchical representations from facial images. This learning progresses through low-level visual cues such as edges, mid-level structures like nose and eye shapes, to high-level emotional embeddings that convey expression intensity and interrelationships among facial features.

When a facial frame is processed, the CNN generates a confidence distribution across predefined emotion classes, including Happy, Sad, Angry, Neutral, Surprise, Fear, and Disgust. Instead of assigning a single label, it provides probability scores reflecting the likelihood that the input expression aligns with learned emotional patterns. For instance, a likely output might show Happy at 87.4%, Neutral at 8.2%, and Surprise at 3.1%, which enhances the interpretability concerning dominant emotions. The model adopts maximum voting to determine the emotional category with the highest score, allowing it to identify the most expressive emotion at that moment while accommodating for other emotional cues present.

This system design prioritizes efficiency for deployment, leveraging a pre-trained network that avoids the need for new dataset collection, feature engineering, and extensive parameter tuning. The inference pipeline is thus lightweight and capable of real-time execution, functioning on consumer devices without GPU requirements. Additionally, the robustness of the deep learning model effectively addresses real-world challenges such as lighting variations, head rotations, occlusions from accessories, and subtle changes in expressions, enhancing its ability to generalize previously learned emotional patterns to new, unseen faces.

D). Emotion-to-Emoji Mapping

The emotion-to-emoji mapping utilized in the Emotion Detection and Emoji Display System. It categorizes each recognized emotion—Happy, Sad, Angry, Surprise, Neutral, and Fear—and assigns a unique graphical emoji to each. This visual mapping improves the user interface, allowing for a clear and immediate comprehension of the detected emotional state. By linking emotions to specific emojis, the system fosters a more engaging and user-friendly feedback process [Table 1].

Once an emotion label is identified, the system converts it into a visually expressive emoji to enhance user understanding:

Table 1: Emotion and emoji mapping

Emotion	Emoji
Happy	
Sad	
Angry	
Surprise	
Neutral	
Fear	

E). GUI Visualization & Interaction

The document discusses a user interface (UI) developed for an emotion analysis system utilizing the Python framework CustomTkinter to enhance human-computer interaction. This interface acts as a bridge between users and the AI's core processing functionality, translating analytical results into visual feedback that is easy to understand.

Key features include a preview window capable of displaying either a live camera feed or user-uploaded static images for emotion analysis, thus allowing users to verify the facial input and enhancing transparency regarding the system's interpretations.

The emotional representation employs a visual communication strategy by presenting emotional predictions in the form of emojis rather than plain text, thereby fostering user engagement through universally recognized symbols. This is complemented by contextual dynamic text prompts,

such as "You look Happy 😊," to clarify the emotion displayed.

Moreover, the interface incorporates various interactive control elements:

- Live feed camera controls (start/stop functionality)
- An image upload dialog
- A manual trigger for emotion recognition
- A utility for saving results, including detected emotions and their corresponding frames
- An auto-detect toggle for continuous emotion monitoring without user intervention

This modular design enables both passive monitoring and active engagement by the user. To accommodate the demanding computational properties of real-time video processing and deep learning inference, these operations run on separate threads from the UI thread to ensure the interface remains responsive during emotion detection.

In summary, the design philosophy focuses on clarity, accessibility, responsiveness, and interactivity, making the technology suitable for both casual users and experimental research contexts, thereby broadening its usability and accessibility.

F). Result Storage & Logging

The paper details a structured result-storage mechanism for emotion recognition analysis, aimed at supporting future investigations, user references, and behavioral monitoring. Key system components include:

- i). **Image Archiving of Processed Frames:** It preserves facial frames used for emotion detection in lossless .PNG format, allowing validation and comparison of emotional predictions without additional user captures.
- ii). **Structured Storage of Emotional Insights:** Alongside the image, the system records the detected emotion category and a visual emoji in a .TXT report, producing insights that include recognized emotion labels, emoji representations, and metadata like confidence levels, thus maintaining interpretability even without visual data.
- iii). **Timestamp-Based Traceability:** Each record is tagged with date and time stamps for chronological indexing, supporting studies of emotional progress, recurrent states, and behavioral trends over time.
- iv). **Foundation for Long-Term Analytics:** The storage of emotional results and facial frames enables an array of extended capabilities, such as personalized emotion history logs, behavioral pattern studies, training datasets for AI models, emotion trend visualizations, and user experience analysis for interactive applications, transforming temporary emotion detection into a robust platform for affective analytics.
- v). **Lightweight and Expandable Storage Design:** The use of .PNG and .TXT formats ensures hardware efficiency in readability and indexing, while allowing seamless upgrades to a database system (SQL/NoSQL) without impacting detection processes.

Overall, this approach ensures comprehensive emotion capture, facilitating deep analysis and tracking over time, thereby enhancing its utility in behavioral analytics.

G). Real-Time Performance Optimization

The proposed emotion recognition system employs various optimization strategies designed to enhance performance while minimizing processing demands and delays, allowing for reliable predictions on standard machines without

specialized hardware. Key to this design is the use of pre-trained inference models, which significantly reduce resource consumption by avoiding local model training—a process ill-suited for real-time applications. Instead, a deep learning model trained on large datasets captures complex facial emotions, thereby decreasing memory usage, computation overhead, and initialization latency.

To manage processing load from continuous high frame rates of real-time video feeds, the system incorporates controlled frame evaluation. This approach regulates frame processing by bypassing non-essential frames and introducing micro-intervals between analyses, thus preventing high CPU/GPU utilization and application lag while maintaining reliable emotion detection. Additionally, it employs a lightweight, efficient emotion recognition framework using the DeepFace model, optimized for inference on standard CPUs, ensuring rapid responses and consistent performance.

The system also transitions to an event-based emotion analysis model, analyzing emotions selectively based on user requests or an enabled auto-detection mode, which enhances responsiveness and minimizes redundant computations. The end-to-end workflow transforms raw facial inputs into emotional outputs, starting with facial input acquisition through real-time video or uploaded images, followed by image standardization and color space alignment for uniform processing. Emotion inference is performed utilizing a

convolutional neural network trained for holistic facial recognition.

Upon determining the dominant emotion by evaluating output probability scores across emotional categories, the system maps recognized emotional labels to emojis for intuitive user communication. A graphical output presents this data visually, accompanying a textual summary of the detected emotion. Additionally, the system offers an optional storage feature to archive analyses as image files or structured text logs, facilitating long-term emotional data tracking without repetitive evaluations.

H). Algorithm

Fig. 1 depicts the workflow of the Emotion Detection and Emoji Display System, which initiates by capturing a face image via a live camera feed or an uploaded photo. The input undergoes pre-processing steps like resizing, normalization, and color conversion to improve detection accuracy. Subsequently, face detection is conducted, cropping the image to focus on the facial region. This cropped face is then analyzed by the emotion recognition model, which determines the emotion expressed, selecting the dominant one based on computed probabilities. The identified emotion is mapped to an appropriate emoji, which is ultimately displayed on the graphical user interface (GUI), visually representing the user's emotional state.

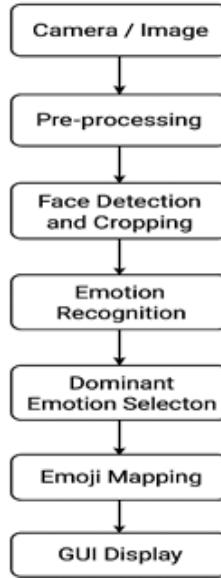


Fig 1: Algorithm of system

4. Results and Discussions

The emotion recognition system focuses on accuracy, emoji mapping, response speed, and user interaction. It operates on an Intel i5 processor with 8 GB RAM and a 720p webcam, functioning without an external GPU, thus making it lightweight. The system successfully identifies emotions such as Happy, Sad, and Angry under various conditions, achieving real-time recognition with a latency of 0.1–0.3 seconds per frame. It features effective emotion-to-emoji mapping and a user-friendly GUI with camera-on, image upload, and detection modes. Performance is optimal with adequate lighting and front-facing orientations, though inaccuracies can occur in low light, heavy occlusions, and extreme head movements. Overall, the system is suitable for applications in virtual classrooms, mental state monitoring, and human communication interfaces.

5. Future Scope

In the future, the proposed facial emotion detection system will enhance its capabilities through the integration of deep learning for multi-face tracking, enabling emotion detection for multiple users within a single frame. This improvement will significantly enhance performance and precision in psychological analysis, as the model will be capable of recognizing micro-expressions and complex emotions. Additionally, the system could function as a multi-modal platform by incorporating voice tone, physiological signals, and data from wearables, which would lead to improved accuracy. Deployment on cloud services like AWS or Azure would facilitate remote monitoring and allow for the development of interfaces to integrate various applications. The system aims to extend its accessibility through AR/VR environments and mobile applications designed for immediate

emotional responses. Utilizing more diverse datasets for training could also enhance recognition accuracy, thus contributing to avenues for discovering perspectives in mental health and wellbeing applications.

6. Conclusion

This paper outlines the design of a real-time Emotion Detection and Display System that utilizes computer vision and deep learning techniques. The system captures live facial expressions, processes image frames, and identifies dominant emotions using a pre-trained Convolutional Neural Network (CNN) model within the DeepFace framework. The detected emotions are visually represented as emojis on a user-friendly graphical user interface (GUI). The proposed system demonstrates stable recognition and efficient visualization while maintaining low computational resource demands, enabling smooth real-time operation. Furthermore, it employs a CustomTkinter interface, making it suitable for applications in human-computer interaction, virtual communication, education, entertainment, and mental health. Future enhancements could include support for tracking multiple faces and deployment on mobile devices, potentially increasing scalability and applicability across various domains.

Acknowledgement

We thank SGGSIE&T's Centre of Excellence in Signal and Image Processing for laboratory resources. Special thanks to Prof. Dr. Lenina S.V.B for guidance.

References

1. Jin, S. & Pedersen, T. Duluth urop at semeval-2018 task 2: Multilingual emoji prediction with ensemble learning and oversampling. arXiv preprint arXiv:1805.10267 (2018).
2. Cowie, R. *et al.* Emotion recognition in human-computer interaction. *IEEE Signal Process. Mag.* 18, 32–80 (2001).
3. Wang, Z. & Pedersen, T. Umdsub at semeval-2018 task 2: Multilingual emoji prediction multi-channel convolutional neural network on subword embedding. arXiv preprint arXiv:1805.10274 (2018).
4. Hussien, W., Al-Ayyoub, M., Tashtoush, Y. & Al-Kabi, M. On the use of emojis to train emotion classifiers. arXiv preprint arXiv:1902.08906 (2019).
5. Human emotion detection to emoji display using machine learning. (2023, June 16). IEEE Conference Publication | IEEE Xplore. <https://ieeexplore.ieee.org/abstract/document/10201174>
6. Emotion detection based on text and emojis. (2024, June 28). IEEE Conference Publication | IEEE Xplore. <https://ieeexplore.ieee.org/abstract/document/10625102>
7. Hand, C. J., Kennedy, A., Filik, R., Pitchford, M., & Robus, C. M. (2022). Emoji identification and emoji effects on sentence Emotionality in ASD-Diagnosed Adults and neurotypical controls. *Journal of Autism and Developmental Disorders*, 53(6), 2514–2528. <https://doi.org/10.1007/s10803-022-05557-4>
8. Deep learning for emoji generation: from faces and gestures to digital emotion. (2024, September 13). IEEE Conference Publication | IEEE Xplore. <https://ieeexplore.ieee.org/abstract/document/10939614>
9. Mood Detection and Emoji Classification using Tokenization and Convolutional Neural Network. (2023, May 17). IEEE Conference Publication | IEEE Xplore. <https://ieeexplore.ieee.org/abstract/document/10142472>
10. Chandra, G. R., Golla, R. C., Gangireddy, T., Nagula, A., & Bala, D. S. (2023). Emoji Creation from Facial Expression Detection Using CNN. In *Lecture notes in networks and systems* (pp. 303–312). https://doi.org/10.1007/978-981-19-9228-5_27.