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Abstract 
This project presents a deep learning-based Android malware detection system that leverages multiple neural network architectures—Multilayer 
Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and 1D Residual Network (ResNet)—to classify 
applications as malicious or benign based on extracted static features. The dataset is preprocessed using standard normalization techniques and 
split for model training and evaluation. Each model is assessed using accuracy and confusion matrix metrics, with ResNet achieving the highest 
accuracy among all. 
To enhance usability, the CNN model is integrated into a Flask-based web application equipped with a desktop-style graphical user interface 
using PyWebView. This GUI allows users to upload feature datasets in CSV format and receive real-time malware predictions in an interactive 
environment. The system is further improved with reproducibility settings, learning rate tuning, and early stopping callbacks to ensure model 
stability. The combination of robust model performance and an intuitive user interface demonstrates the system’s potential for practical and 
scalable Android malware detection. 
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1. Introduction 
The Android operating system has become the dominant 
platform in the mobile ecosystem, powering billions of 
devices worldwide. Its open-source nature, wide user base, 
and flexible application deployment have made it a popular 
target for malicious actors. The proliferation of Android 
applications (APKs) has led to an alarming increase in 
malware instances, posing significant risks to user privacy, 
financial security, and data integrity. Traditional malware 
detection techniques, such as signature-based or rule-based 
systems, are often inadequate in identifying zero-day attacks 
or polymorphic malware due to their dependency on known 
threat patterns. 
In recent years, machine learning and deep learning 
techniques have emerged as powerful tools for detecting 
malware based on application behavior and static code 
features. Deep learning models such as Multilayer Perceptron 
(MLP), Convolutional Neural Network (CNN), Long Short-
Term Memory (LSTM), and Residual Neural Network 
(ResNet) offer high accuracy and can automatically learn 
complex patterns within large datasets.  
This project proposes an Android malware detection system 
that uses these deep learning models to classify applications 
as either benign or malicious. The dataset comprises static 

features extracted from Android application packages 
(APKs), which are preprocessed and normalized before 
training. The system not only compares the performance of 
various deep learning models but also integrates the best-
performing model (CNN) into a user-friendly Flask-based 
web application with a desktop GUI built using PyWebView. 
The application allows real-time prediction by enabling users 
to upload CSV files of extracted features and receive 
immediate results. This solution aims to provide a practical, 
accurate, and scalable approach to mobile malware detection.  
 
2. Literature Review 
Yizheng Chen, Zhoujie Ding, and David Wagner (2023) 
introduced a continuous learning framework for Android 
malware detection that addresses concept drift by integrating 
hierarchical contrastive learning with active learning. Their 
method notably reduced false negative rates from 14% to 9% 
and false positive rates from 0.86% to 0.48%, while ensuring 
stable performance over a seven-year timeframe. 
Safayat Bin Hakim, Muhammad Adil, Kamal Acharya, and 
Houbing Herbert Song (2024) employed an attention-
enhanced Multi-Layer Perceptron (MLP) combined with an 
SVM to classify Android malware using a minimal feature 
subset. Despite using just ~47 features (further reduced to 14 
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via LDA), their model achieved over 99% accuracy, 
showcasing efficiency and effectiveness in static-feature-
driven detection. 
Tanjim Fatima and Deepak Thakur conducted a comparative 
study on static datasets evaluating CNN, ANN, Random 
Forest, and Extra Tree Classifier. Their CNN-based approach 
achieved 98% accuracy, outperforming other models and 
highlighting the importance of feature subset selection, 
especially using methods like Chi-square, to harness the 
power of CNNs in high. 
These studies collectively establish that deep learning models, 
particularly CNN and hybrid approaches, outperform 
traditional methods in malware detection accuracy. However, 
challenges such as concept drift, class imbalance, and model 
robustness remain key areas for further innovation. Inspired 
by these insights, our work proposes a comparative and 
deployable system using four deep learning architectures—
MLP, CNN, LSTM, and 1D ResNet—integrated into a secure 
web-based GUI for real-time Android malware detection.  
 
3. Objectives 
To develop an intelligent system capable of detecting Android 
malware using machine learning and deep learning 
techniques. To extract and analyze static features (e.g., 
permissions, API calls) from Android applications to 
distinguish between benign and malicious behavior. 
To implement and compare multiple detection models, 
including MLP, CNN, LSTM, and ResNet, to identify the 
most effective algorithm for malware classification. 
To evaluate the performance of each model using standard 
metrics such as accuracy, precision, recall, F1-score, and 
confusion matrix. To build a real-time detection interface 
using a web-based GUI that enables users to upload app 
feature files and receive immediate classification results. To 
enhance Android device security by proposing a scalable, 
accurate, and practical solution for early detection of malware 
threats.  
 
4. Methodology 
The proposed methodology for Android malware detection 
involves a systematic pipeline that includes data collection, 
preprocessing, model training, evaluation, and deployment. 
The system is designed to classify Android applications as 
benign or malicious using multiple deep learning models, and 
it integrates a real-time prediction interface through a 
graphical user interface (GUI). 
 
i). Data Collection and Feature Extraction 
A publicly available Android application dataset is used, 
comprising both benign and malicious samples. The dataset 
includes static features such as permissions, API calls, and 
activity components extracted from Android application 
packages (APKs). Tools such as Androguard or static analysis 
scripts are used to extract and structure the data into a CSV 
format.  
 
ii). Data Preprocessing 
The raw feature data undergoes preprocessing steps: 
• Label Encoding: Target labels (benign/malware) are 

converted to numerical form. 
• Feature Normalization: StandardScaler is applied to 

normalize feature values for consistent model input. 
• Train-Test Split: The dataset is split into training (75%) 

and testing (25%) sets using stratified sampling to 
preserve class distribution. 

iii). Model Development 
Four deep learning architectures are implemented to evaluate 
detection accuracy: 
• Multilayer Perceptron (MLP): A feedforward neural 

network with fully connected layers. 
• Convolutional Neural Network (CNN): A 1D CNN 

architecture to capture local feature patterns from static 
feature vectors. 

• Long Short-Term Memory (LSTM): A recurrent neural 
network that captures sequence-like relationships within 
feature data. 

• 1D Residual Network (ResNet): A deep architecture 
utilizing residual connections to address vanishing 
gradient issues and enhance feature learning. 

 
Each model is trained using the training dataset and optimized 
with loss functions such as binary or categorical cross-
entropy, and optimizers like Adam. Regularization techniques 
such as dropout, early stopping, and learning rate reduction 
are applied to prevent overfitting. 
 
iv). Model Evaluation 
The models are evaluated on the test set using: 
• Accuracy 
• Precision 
• Recall 
• F1-score 
• Confusion Matrix 
 
The best-performing model is identified based on overall 
classification performance. 
 
v). GUI Integration and Deployment 
The top-performing model (e.g., CNN or ResNet) is 
integrated into a Flask-based web application. A PyWebView 
GUI is developed to allow users to interact with the system 
through a desktop-like window. The interface enables users to 
upload CSV files containing application features, which are 
processed and classified in real-time.  
 
5. Result and Discussion 
The proposed Android malware detection system was 
evaluated using four deep learning models:  
Multilayer Perceptron (MLP), Convolutional Neural Network 
(CNN), Long Short-Term Memory (LSTM), and 1D Residual 
Network (ResNet). Each model was trained on a dataset 
containing static features extracted from Android applications 
and tested on a hold-out dataset comprising 25% of the total 
samples. 
The MLP model achieved an accuracy of 97.60%, indicating 
strong baseline performance with a simple feedforward 
architecture. The CNN model improved this result, attaining 
98.11% accuracy, by capturing localized patterns in feature 
vectors through convolutional filters. 
Further enhancement was observed with the LSTM model, 
which achieved 98.28% accuracy, leveraging its ability to 
learn dependencies across feature sequences. Among all 
models, the 1D ResNet architecture delivered the best 
performance with 98.44% accuracy, due to its deep residual 
connections that facilitated improved feature extraction and 
learning stability.  
In addition to accuracy, the confusion matrices and 
classification reports confirmed low false positive and false 
negative rates across all models. The ResNet model 
demonstrated superior generalization, with minimal 
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misclassification of benign and malicious samples.  
 

 
 

Fig 1: Model Accuracy 
 
A bar graph comparison of all model accuracies was 
generated to highlight performance differences. Based on 
these results, the ResNet model was selected for deployment 
in the real-time Flask-based malware detection interface, 
which allows users to upload feature files and receive 
immediate predictions. The GUI, built using PyWebView, 
offered a user-friendly environment for testing and validated 
the model’s effectiveness in a practical use case. 

 

 
 

Fig 2: Confusion Matrix 
 
These results demonstrate that deep learning models, 
particularly ResNet and LSTM, provide high accuracy and 
robustness for Android malware detection. The integrated 
system offers a scalable, interactive, and effective tool for 
real-world mobile security applications. 
 

 
 

Fig 3: Web Page or Detection 

These results demonstrate that deep learning models, 
particularly ResNet, provide high accuracy and robustness for 
Android malware detection. The integrated system offers a 
scalable, interactive, and effective tool for real-world mobile 
security applications. 
 
Conclusion 
The Android Malware Detection System presented in this 
project effectively combines static analysis with advanced 
machine learning and deep learning models to detect 
malicious applications. By analyzing extracted features from 
Android apps, such as permissions, API calls, and behaviors, 
the system identifies patterns indicative of malware. The use 
of multiple models—MLP, CNN, LSTM, and ResNet—
allows for performance comparison, with CNN and ResNet 
models showing notably high accuracy in classifying malware 
versus benign apps. 
One of the key strengths of the project is its implementation 
of a graphical user interface (GUI) using Tkinter, which 
makes the system accessible to users without technical 
backgrounds. Through this interface, users can upload feature 
datasets in CSV format and receive real-time predictions with 
detailed confidence scores. This ensures not only ease of use 
but also quick decision-making when assessing the security of 
applications. 
In terms of real-time application, the system can be integrated 
into mobile app testing environments, cybersecurity 
platforms, or enterprise device management solutions. With 
slight modifications and API integration, it can serve as a pre-
deployment security screening tool for mobile developers or 
an automated malware scanner in app marketplaces. 
Overall, the system offers a scalable, accurate, and user-
centric approach to tackling Android malware. It 
demonstrates how deep learning techniques can be effectively 
applied to practical cybersecurity challenges, making it a 
valuable contribution to the growing need for mobile threat 
detection. 
 
Future Enhancement 
This system can be further enhanced by integrating dynamic 
analysis of Android applications, enabling detection based on 
real-time behavior in addition to static features. Future work 
may also include building an automated APK feature 
extraction tool, deploying the model on cloud platforms for 
scalability, and developing a mobile application version of the 
detector for on-device malware scanning. 
Additionally, incorporating hybrid models that combine static 
and dynamic features, as well as implementing continuous 
learning techniques to adapt to emerging malware variants, 
will significantly improve the accuracy, efficiency, and real-
world applicability of the system. 
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