Impact Factor (SJIF): 6.126

. o N — T

Received: 05/September/2025

IJRAW: 2025; 4(10):631-634

E-ISSN: 2583-1615, P-ISSN: 3049-3498

Accepted: 17/October/2025

A Deep Learning Approach for Static Analysis-Based Android Malware
Detection

“IDr. S Krishnaveni and *Reshmitha D
*I Assistant Professor, Department of Data Analytics (PG), PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, India.
2PG Scholar, Department of Data Analytics (PG), PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, India.

Abstract

This project presents a deep learning-based Android malware detection system that leverages multiple neural network architectures—Multilayer
Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and 1D Residual Network (ResNet)—to classify
applications as malicious or benign based on extracted static features. The dataset is preprocessed using standard normalization techniques and
split for model training and evaluation. Each model is assessed using accuracy and confusion matrix metrics, with ResNet achieving the highest
accuracy among all.

To enhance usability, the CNN model is integrated into a Flask-based web application equipped with a desktop-style graphical user interface
using PyWebView. This GUI allows users to upload feature datasets in CSV format and receive real-time malware predictions in an interactive
environment. The system is further improved with reproducibility settings, learning rate tuning, and early stopping callbacks to ensure model
stability. The combination of robust model performance and an intuitive user interface demonstrates the system’s potential for practical and
scalable Android malware detection.

Keywords: Deep learning, Convolutional neural networks (CNN), Long short-term memory (LSTM), Residual neural networks (ResNet),

Multilayer perceptron (MLP), Web-based application, Mobile application security, Graphical user interface (GUI).

1. Introduction

The Android operating system has become the dominant
platform in the mobile ecosystem, powering billions of
devices worldwide. Its open-source nature, wide user base,
and flexible application deployment have made it a popular
target for malicious actors. The proliferation of Android
applications (APKs) has led to an alarming increase in
malware instances, posing significant risks to user privacy,
financial security, and data integrity. Traditional malware
detection techniques, such as signature-based or rule-based
systems, are often inadequate in identifying zero-day attacks
or polymorphic malware due to their dependency on known
threat patterns.

In recent years, machine learning and deep learning
techniques have emerged as powerful tools for detecting
malware based on application behavior and static code
features. Deep learning models such as Multilayer Perceptron
(MLP), Convolutional Neural Network (CNN), Long Short-
Term Memory (LSTM), and Residual Neural Network
(ResNet) offer high accuracy and can automatically learn
complex patterns within large datasets.

This project proposes an Android malware detection system
that uses these deep learning models to classify applications
as either benign or malicious. The dataset comprises static

*Corresponding Author: Dr. S Krishnaveni

features extracted from Android application packages
(APKs), which are preprocessed and normalized before
training. The system not only compares the performance of
various deep learning models but also integrates the best-
performing model (CNN) into a user-friendly Flask-based
web application with a desktop GUI built using PyWebView.
The application allows real-time prediction by enabling users
to upload CSV files of extracted features and receive
immediate results. This solution aims to provide a practical,
accurate, and scalable approach to mobile malware detection.

2. Literature Review

Yizheng Chen, Zhoujie Ding, and David Wagner (2023)
introduced a continuous learning framework for Android
malware detection that addresses concept drift by integrating
hierarchical contrastive learning with active learning. Their
method notably reduced false negative rates from 14% to 9%
and false positive rates from 0.86% to 0.48%, while ensuring
stable performance over a seven-year timeframe.

Safayat Bin Hakim, Muhammad Adil, Kamal Acharya, and
Houbing Herbert Song (2024) employed an attention-
enhanced Multi-Layer Perceptron (MLP) combined with an
SVM to classify Android malware using a minimal feature
subset. Despite using just ~47 features (further reduced to 14

<631>

IJRAW

via LDA), their model achieved over 99% accuracy,
showcasing efficiency and effectiveness in static-feature-
driven detection.

Tanjim Fatima and Deepak Thakur conducted a comparative
study on static datasets evaluating CNN, ANN, Random
Forest, and Extra Tree Classifier. Their CNN-based approach
achieved 98% accuracy, outperforming other models and
highlighting the importance of feature subset selection,
especially using methods like Chi-square, to harness the
power of CNNs in high.

These studies collectively establish that deep learning models,
particularly CNN and hybrid approaches, outperform
traditional methods in malware detection accuracy. However,
challenges such as concept drift, class imbalance, and model
robustness remain key areas for further innovation. Inspired
by these insights, our work proposes a comparative and
deployable system using four deep learning architectures—
MLP, CNN, LSTM, and 1D ResNet—integrated into a secure
web-based GUI for real-time Android malware detection.

3. Objectives

To develop an intelligent system capable of detecting Android
malware using machine learning and deep learning
techniques. To extract and analyze static features (e.g.,
permissions, API calls) from Android applications to
distinguish between benign and malicious behavior.

To implement and compare multiple detection models,
including MLP, CNN, LSTM, and ResNet, to identify the
most effective algorithm for malware classification.

To evaluate the performance of each model using standard
metrics such as accuracy, precision, recall, Fl-score, and
confusion matrix. To build a real-time detection interface
using a web-based GUI that enables users to upload app
feature files and receive immediate classification results. To
enhance Android device security by proposing a scalable,
accurate, and practical solution for early detection of malware
threats.

4. Methodology

The proposed methodology for Android malware detection
involves a systematic pipeline that includes data collection,
preprocessing, model training, evaluation, and deployment.
The system is designed to classify Android applications as
benign or malicious using multiple deep learning models, and
it integrates a real-time prediction interface through a
graphical user interface (GUI).

i). Data Collection and Feature Extraction

A publicly available Android application dataset is used,
comprising both benign and malicious samples. The dataset
includes static features such as permissions, API calls, and
activity components extracted from Android application
packages (APKs). Tools such as Androguard or static analysis
scripts are used to extract and structure the data into a CSV
format.

ii). Data Preprocessing

The raw feature data undergoes preprocessing steps:

e Label Encoding: Target labels (benign/malware) are
converted to numerical form.

e Feature Normalization: StandardScaler is applied to
normalize feature values for consistent model input.

e Train-Test Split: The dataset is split into training (75%)
and testing (25%) sets using stratified sampling to
preserve class distribution.

https://academicjournal.ijraw.com

iii). Model Development

Four deep learning architectures are implemented to evaluate

detection accuracy:

e Multilayer Perceptron (MLP): A feedforward neural
network with fully connected layers.

e Convolutional Neural Network (CNN): A 1D CNN
architecture to capture local feature patterns from static
feature vectors.

e Long Short-Term Memory (LSTM): A recurrent neural
network that captures sequence-like relationships within
feature data.

e 1D Residual Network (ResNet): A deep architecture
utilizing residual connections to address vanishing
gradient issues and enhance feature learning.

Each model is trained using the training dataset and optimized
with loss functions such as binary or categorical cross-
entropy, and optimizers like Adam. Regularization techniques
such as dropout, early stopping, and learning rate reduction
are applied to prevent overfitting.

iv). Model Evaluation

The models are evaluated on the test set using:
e Accuracy

Precision

Recall

Fl-score

Confusion Matrix

The best-performing model is identified based on overall
classification performance.

v). GUI Integration and Deployment

The top-performing model (e.g., CNN or ResNet) is
integrated into a Flask-based web application. A PyWebView
GUI is developed to allow users to interact with the system
through a desktop-like window. The interface enables users to
upload CSV files containing application features, which are
processed and classified in real-time.

5. Result and Discussion

The proposed Android malware detection system was
evaluated using four deep learning models:

Multilayer Perceptron (MLP), Convolutional Neural Network
(CNN), Long Short-Term Memory (LSTM), and 1D Residual
Network (ResNet). Each model was trained on a dataset
containing static features extracted from Android applications
and tested on a hold-out dataset comprising 25% of the total
samples.

The MLP model achieved an accuracy of 97.60%, indicating
strong baseline performance with a simple feedforward
architecture. The CNN model improved this result, attaining
98.11% accuracy, by capturing localized patterns in feature
vectors through convolutional filters.

Further enhancement was observed with the LSTM model,
which achieved 98.28% accuracy, leveraging its ability to
learn dependencies across feature sequences. Among all
models, the 1D ResNet architecture delivered the best
performance with 98.44% accuracy, due to its deep residual
connections that facilitated improved feature extraction and
learning stability.

In addition to accuracy, the confusion matrices and
classification reports confirmed low false positive and false
negative rates across all models. The ResNet model
demonstrated superior generalization, with minimal

<632>

https://academicjournal.ijraw.com/

IJRAW

misclassification of benign and malicious samples.

100 Model Accuracy Comparison

80

60 4

Accuracy (%)

40

20

MLP CNN L5TM Reshet

Fig 1: Model Accuracy

A bar graph comparison of all model accuracies was
generated to highlight performance differences. Based on
these results, the ResNet model was selected for deployment
in the real-time Flask-based malware detection interface,
which allows users to upload feature files and receive
immediate predictions. The GUI, built using PyWebView,
offered a user-friendly environment for testing and validated
the model’s effectiveness in a practical use case.

MLP Confusion Matrix
50

Actual

-20

=10

Predicted

Fig 2: Confusion Matrix

These results demonstrate that deep learning models,
particularly ResNet and LSTM, provide high accuracy and
robustness for Android malware detection. The integrated
system offers a scalable, interactive, and effective tool for
real-world mobile security applications.

Android Malware Detection System

Seber) Moot
o =

W Pt

Pradicsion Oueget

Fig 3: Web Page or Detection

https://academicjournal.ijraw.com

These results demonstrate that deep learning models,
particularly ResNet, provide high accuracy and robustness for
Android malware detection. The integrated system offers a
scalable, interactive, and effective tool for real-world mobile
security applications.

Conclusion

The Android Malware Detection System presented in this
project effectively combines static analysis with advanced
machine learning and deep learning models to detect
malicious applications. By analyzing extracted features from
Android apps, such as permissions, API calls, and behaviors,
the system identifies patterns indicative of malware. The use
of multiple models—MLP, CNN, LSTM, and ResNet—
allows for performance comparison, with CNN and ResNet
models showing notably high accuracy in classifying malware
versus benign apps.

One of the key strengths of the project is its implementation
of a graphical user interface (GUI) using Tkinter, which
makes the system accessible to users without technical
backgrounds. Through this interface, users can upload feature
datasets in CSV format and receive real-time predictions with
detailed confidence scores. This ensures not only ease of use
but also quick decision-making when assessing the security of
applications.

In terms of real-time application, the system can be integrated
into mobile app testing environments, cybersecurity
platforms, or enterprise device management solutions. With
slight modifications and API integration, it can serve as a pre-
deployment security screening tool for mobile developers or
an automated malware scanner in app marketplaces.

Overall, the system offers a scalable, accurate, and user-
centric approach to tackling Android malware. It
demonstrates how deep learning techniques can be effectively
applied to practical cybersecurity challenges, making it a
valuable contribution to the growing need for mobile threat
detection.

Future Enhancement

This system can be further enhanced by integrating dynamic
analysis of Android applications, enabling detection based on
real-time behavior in addition to static features. Future work
may also include building an automated APK feature
extraction tool, deploying the model on cloud platforms for
scalability, and developing a mobile application version of the
detector for on-device malware scanning.

Additionally, incorporating hybrid models that combine static
and dynamic features, as well as implementing continuous
learning techniques to adapt to emerging malware variants,
will significantly improve the accuracy, efficiency, and real-
world applicability of the system.

References

1. Arp D, Spreitzenbarth M, Hiibner M. Gascon H & Rieck
K. DREBIN: Effective and Explainable Detection of
Android Malware in Your Pocket. NDSS Symposium,
2014. DOI: 10.14722/ndss.2014.23247.

2. Mariconti E, Onwuzurike L, Andriotis P, De Cristofaro
E, Ross GJ & Stringhini G. MaMaDroid: Detecting
Android Malware by Building Markov Chains of
Behavioral Models. NDSS2017, 2017. DOI:
10.14722/ndss.2017.2335

3. Zhang X, Zhang Y, Zhong M, Ding D, Cao Y, Zhang Y,
Zhang M & Yang M. Enhancing state-of-the-art
classifiers with API semantics to detect evolved

<633 >

https://academicjournal.ijraw.com/

IJRAW https://academicjournal.ijraw.com

Androidmalware (API-Graph) 2020. DOI:
10.1145/3372297.341729

4. Alzaylaee MK, Yerima SY & Sezer S. DL-Droid: Deep
learning based Android malware detection using real
devices. Computers & Security (Comput. Secur), 2020.
DOI: 10.1016/j.c0se.2019.101663.

5. Zhang X, Zhang Y, Zhong M, Ding D, Cao Y, Zhang Y,
Zhang M & Yang M. Enhancing state-of-the-art
classifiers with API semantics to detect evolved
Androidmalware (API-Graph). ACMCCS2020, 2020.
DOI:10.1145/3372297.3417291.

6. Aafer Y, Du W & Yin H. DroidAPIMiner: Mining API-
Level Features for Robust Malware Detection in
Android. SecureComm/LNCS, 2013. DOI: 10.1007/978-
3-31042831 6.

7. Burguera I, Zurutuza U & Nadjm-Tehrani S. Crowdroid:
Behavior-Based Malware Detection System for Android.
SPSM @ CCS 2011. DOI: 10.1145/2046614.204661.

8. Yang C, Xu Z, Gu, G, Yegneswaran V & Porras P.
DroidMiner: Automated Mining and Characterization of
Fine-grained Malicious Behaviors in Android
Applications. LNCS (Springer), 2014. DOI: 10.1007/978-
3-319-11203-9 10.

9. Allix K, Bissyand¢ TF, Klein J & Le Traon Y.
AndroZoo: collecting millions of Android apps for the
research community, 2016. MSR 2016.
DOI:10.1145/2901739.2903508.

10. Blasing T, Bissyandé TF, Klein J & Le Traon Y.
Semantics-Aware Android Malware Classification Using
Weighted API Dependency Graphs. CCS/Conference
proceedings, 2014. DOI: 1145/2660267.2660359.

<634 >

https://academicjournal.ijraw.com/

