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Abstract 
The security of sensitive healthcare data is of paramount importance as modern healthcare systems increasingly depend on digital platforms for 
data collection, processing, and storage. Although existing solutions have made commendable progress in protecting healthcare information, 
persistent challenges remain—such as slow data transmission, lack of consistent end-to-end encryption, and varying system performance. To 
overcome these limitations, this paper presents a novel system that ensures comprehensive protection for healthcare data through robust 
encryption and secure cloud storage. The proposed system captures sensitive patient information from diverse sources, including EHRs and 
medical databases. This data is encrypted using the Two fish algorithm—a fast and highly secure symmetric key cryptographic technique known 
for its strong resistance to brute-force attacks. Once encrypted, the data is transmitted via Wire Guard VPN tunnels, which establish a high-
speed, low-latency, and secure communication channel, thereby mitigating risks associated with data interception during transmission. 
Ultimately, the encrypted data is securely stored in a cloud environment that adheres to major data protection frameworks such as HIPAA and 
GDPR, ensuring compliance with global privacy regulations. Experimental results reveal the system's effectiveness in enhancing data security. 
Encryption strength fluctuated between 22% and 97% across different time intervals, with prominent peaks observed at 83% during interval 2 
and 97% in interval 5. These fluctuations suggest a trend of improving security performance over time. Additionally, the system exhibits a linear 
relationship between encryption time and multiplication depth, with processing time increasing from 0.10 seconds at depth 0 to 0.35 seconds at 
depth 7. These findings highlight the system's scalability and robustness, demonstrating its capability to address critical healthcare data security 
issues while maintaining regulatory compliance and efficient data management. 
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1. Introduction 
The healthcare industry is facing tremendous challenges in the 
arrival of digital health technologies that has made securing 
sensitive patient information an increasing challenge [1]. The 
enormous amounts of data from IoT devices, EHRs and 
medical sensors have improved the making of decisions and 
better patient outcomes [2]. However, their increasing volume 
and complexity contribute to significant privacy and security 
risks. Healthcare data are sensitive, making them vulnerable 
to unauthorized access, which could result in financial losses, 
reputational damage and legal outcomes; hence, adherence to 
many statutory procedures like HIPAA and GDPR is 
important for ensuring privacy and security of patients’ data 
[3]. Therefore, there is a need for safe handling of health data 
in order to maintain trust and uphold the rights to privacy [4]. 
The rapid digital transformation of systems has necessitated 
modern mechanisms in safeguarding patient information [5]. 
This guarantees a combination of strong encryption, proven 
secure transmission and reliable storage methods. 
There are several emerging trends that enhance the 
importance of healthcare data security: First, IoT-enabled 

devices are being used in the clinical setting such as 
wearables and diagnostic tools that link into patient health 
continuously to improve health outcomes. Enhanced 
connectivity has however increased risks because connectivity 
means more devices and therefore more points of entry for an 
unauthorized party. The trend appears to be fostered through 
increased partnerships among healthcare providers, insurance 
companies, biomedical firms and research organizations, 
which would all need access to sensitive data. Recently, more 
parties are collating data into their databases and with this, the 
risk of exposure increases. Added to this is growing criminal 
sophistication among cybercriminals, as well as widespread 
data breaches that threaten patient privacy. More health 
information is being directly targeted due to the rising 
competition for unhealthy personal health data, making such 
healthcare data an important asset to protect. Thus, with 
current horizontal sharing and analysis of healthcare data 
across applications, it becomes even more difficult to 
maintain consistent integrity and secrecy Pulakhandam et al. 
(2023) [6] support the proposed method by demonstrating how 
their hybrid blockchain strategy ensures secure, decentralized, 
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and efficient healthcare data sharing through advanced 
cryptographic algorithms, reinforcing data privacy and 
integrity throughout the lifecycle. 
Traditional approaches for safeguarding healthcare data do 
not meet the requirement of security threats depending on 
their modernity. Indeed, many healthcare systems use 
outdated encryption protocols like RC4 and 3DES vulnerable 
to contemporary cryptographic attacks. Such protection is 
inadequate for sensitive healthcare data. Moreover, 
centralized data storage systems represent a single point of 
failure and being breached or encountering system failure are 
weaknesses in cybersecurity additionally, traditional access 
control environments that allow unauthorized access appear to 
be weak and include password-based security mechanisms 
and lack of multi-factor authentication. Another example is 
physical storage with access managed manually, which raises 
the possibility of human errors leading to data breaches. The 
evolution of cyber threats evidently renders any traditional 
approach to security ineffectual. Healthcare organizations 
must therefore adjust and use more advanced and secure 
technologies, including modern encryption algorithms such as 
and secure transmission protocols like to secure sensitive 
patient data [7].  
The old methods of securing healthcare data become 
insufficient in coping with the expanding complexity and 
sophistication of contemporary cybersecurity threats. Ray said 
that the legacy encryption protocols like RC4 and 3DES that 
are still in use in numerous healthcare systems have been 
demonstrated to be susceptible to modern cryptographic 
attacks. These old algorithms do not have this resilience, 
which is needed to defend very sensitive patient information 
in fast-changing digital landscapes. Moreover, centralized 
systems of storage of data contain major loopholes, becoming 
single points of failure. A failure or malfunction of 
architecture of this kind can leak enormous amounts of 
confidential information in a single failure. Worse still, many 
of the traditional access control mechanisms continue to 
depend on weak password-based authentication, and tend not 
to include sophisticated defences such as multi-factor 
authentication, leaving them open for attacks by unauthorized 
access [8].  
Conventional procedures for ensuring privacy of healthcare 
data are becoming less effective over the increasingly 
complex and changing contemporary cyberthreat 
environment. As Ray notes, legacy encryption protocols such 
as RC4 and 3DES, which are well-represented in healthcare 
systems, have been shown to be very susceptible to modern 
cryptography attacks. These old algorithms also do not have 
the strength and flexibility required to secure patient sensitive 
information in high-speed digital first environments. What 
with healthcare data being produced and disseminated in 
record levels–especially through electronic health records, 
IoT devices and remote monitoring systems–there is urgent 
need for robust, resilient encryption. Unfortunately, these are 
the legacy systems that come short and many times fail to 
measure up to the responsiveness of and high-stakes data 
protection. Garikipati and Kumar (2020) [9] powerful GRU-
based system revolutionizes threat detection and cloud 
security by delivering unparalleled anomaly identification and 
adaptive defense mechanisms, significantly empowering the 
proposed method to achieve unmatched healthcare data 
protection and fortress-level cloud management. 
Additional to the problem is the use of centralized data 
storage systems which by nature means single point of failure. 
A breach, system error or malfunction in such an 

infrastructure may culminate in leaking of large quantities of 
confidential patient data in one exposure event. Also, 
traditional access control mechanisms often heavily rely on 
the basic authentication of the password type without 
incorporating more sophisticated security means such as MFA 
or biometrical verification. This makes systems vulnerable to 
unauthorized entry attacks, phishing attacks, and credential 
stealing. With cyber threats getting sophisticated and more 
relentless by the day, it is apparent that static security 
mechanisms that are out of date cannot effectively protect 
healthcare data anymore. There is an immediate call for 
migration to the modern and adaptive security infrastructures 
that adopt strong encryption, decentralized architectures and 
smart access control mechanisms as to provide complete 
safeguards to the privacy of patients and the system. 
Besides, manual processing of physical data storage opens the 
door for the error of humans, which means that the possibility 
of data breaches is raised, and data protection regulations such 
as HIPAA and GDPR are not met. With cyber threats 
constantly changing dynamics and side, static and centralized 
security frameworks cannot cope. Healthcare organizations, 
therefore, have to move forward to the advanced and dynamic 
security infrastructures. This involves the use of strong 
encryption such as two fish, which is known to be fast and has 
high security key lengths, and the use of Wire Guard, a 
lightweight VPN protocol that offers secure low-latency data 
transmission for data transfer. These technologies not only 
improve confidentiality and integrity but also allows 
scalability and performance to secure the patient data at the 
entire lifecycle – from acquisition and transmission to storing 
it up in the cloud and access control. 
The structure of this paper is divided into several sections: 
Section 2 presents a Literature Survey discussing existing 
methodologies and their limitations. Section 3 deals with the 
proposed methodologies in detail. Section 4 describes results 
presenting performance metrics of the system. Finally, 
Section 5 concludes and summarizes the findings. 
 
2. Literature Survey 
Chinnasamy and Deepalakshmi [10] has developed the 
invention of an IoMT and blockchain-based heart disease 
monitoring system for enhancing heart health assessment. The 
research considered limitations of some existing studies in 
including arrhythmia implications together with ECG and 
PCG data for better disease prediction. The classification was 
done using BS-THA and OA-CNN models, blockchain was 
integrated for secure data storage and MAC was used for 
authentication. The feature extraction methods included 
spectrum analysis, signal decomposition, scalogram 
conversion and DPCA-based selection for improving 
classification accuracy. However, the limitation involved 
computational complexity and integration issues, in addition 
to the probable latency in real-life implementations.  
Masood et al. [11] dealt with federated learning and cloud-edge 
collaborative computing systems to tackle security problems 
in collaborative computing. The research created a framework 
for multi-national validation for evaluation of the 
performance of the system under attack and no attack 
scenarios. Implementation of the End-to-End Privacy-
Preserving Deep Learning model was carried out on 
classifying attacks while protecting the data privacy. The 
effectiveness of the model was evaluated using estimates 
Time, Node Count, Routing Count and Data Delivery Ratio. 
However, some are high computational overhead, scalability 
issues and vulnerabilities due to evolving cyber threats.  
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Amanat et al. [12] presented the security issues the software 
vendors face while handling a large volume of data in cloud 
environments. The research employed the Analytic Hierarchy 
Process for systematically identifying, ranking and evaluating 
a category of security concerns which were about data 
integrity, unauthorized access and privacy of data. The results 
indicated that advanced encryption, AI-enabled threat 
detection and multi-factor authentication are the most 
powerful security techniques. It also provided structured 
recommendations to upgrade the cloud data security via real-
time threat detection systems. Nonetheless, the limitations 
included integration complexities, computational overheads 
and evolving nature of cyber threats.  
Molo et al. [13] made an overall evaluation of software 
vendors’ security problems with huge amounts of data used 
over cloud platforms. It applied the AHP to derive the 
presented list of security priorities, with the most critical 
categories of security concerns, such as data integrity, transit 
security, and data privacy. This classic approach helped 
define the key security threats to cloud infrastructures, 
shedding light on where the priorities need to be. The findings 
revealed that the most effective practices for reducing threats 
in the cloud data environments include using advanced 
encryption techniques, AI-powered threat detection, and the 
MFA. These measures were proven to provide substantial 
protection in case of data breaches, unauthorized intrusions, 
and other malevolent actions aimed at compromising 
confidential data. 
Abouelmehdi, Beni-Hessane, and Khaloufi [14] identifying 
best practices, the research also provided actionable 
recommendations for enhancing cloud data security, 
emphasizing the implementation of capable of adaptive 
responses to dynamic threat landscapes. However, despite 
these advancements, several limitations were acknowledged. 
Integration complexities often arise when deploying advanced 
security tools across heterogeneous cloud infrastructures. The 
study also noted considerable computational overheads, 
particularly when combining encryption and AI-driven 
monitoring at scale. Most critically, the rapidly evolving 
nature of cyber threats poses a continual challenge, requiring 
organizations to remain proactive and adaptive in their 
security strategies. These insights underscore the importance 
of investing in scalable, intelligent security frameworks that 
can dynamically respond to emerging threats while 
maintaining the performance demands of large-scale cloud 
operations. AI and IoT for decision-making, emphasized by 
Gudivaka et al. (2023) [15], reinforces the proposed system 
approach to securely managing healthcare data using 
proposed method to address security challenges. 
Javaid et al. [16] has studied making security to the IoTs in 
terms of critical node identification, vulnerability assessment, 
proposing measures for security and overall performance 
impact analysis on the system. One of the quantitative 
methodologies is developed to identify the important 
components of IoT systems, after which a sufficient and 
thorough vulnerability assessment is conducted. The intrusion 
detection system and the various encryption techniques, 
including access control measures and continuous security 
audits, are proposed and evaluated based on the effectiveness 
concerning securing IoT. 
Hanen, Kechaou, and Ayed [17] suggested an innovative 
technique called P2DS which primarily gathers financial data 
in mobile cloud environment study with a view of building up 
provisions against the growing security threats in financial 
institutions through an amalgamation of Attribute Based 

Semantic Access Control, Proactive Determinative Access 
scheme and Attribute Based Encryption. The framework must 
be capable of carrying out its action so as to encrypt quickly, 
classify with accuracy and promptly respond to threats. 
Consequently, P2DS endeavours to be a trustworthy solution 
for protection of sensitive financial data in dynamically 
changing digital area. The practical limitations emerging from 
the finding of this work being computational overhead, 
scalability and emerging cyber threats putting into account 
vulnerability. 
Besides the findings of best practices, the research also 
offered practical recommendations on the strengthening of 
cloud data security; namely, the implementation of detection 
systems with adaptive responses to ever-changing 
environments of threats. However, with the advances, there 
were several limitations that were accepted. Complexities in 
integration are not uncommon when implementing capable 
security tools into diverse cloud environments. The research 
also indicated significant computational overheads especially 
when the encryption and AI-governed monitoring was used at 
scale. Most importantly, the quick change of cyber-threats 
become a constant challenge for the organizations that need to 
be ready to manage security measures proactively and 
flexibly. Such insights emphasize the need for investing in 
scalable, intelligent security frameworks that can adapt 
flexibly and, in a time,-sensitive manner to evolving threats 
yet still live up to the performance of large-scale cloud 
operations. 
In the analysis laid out by D. Kumar and S [18], AI-machine 
learning detection of frauds occurring in the domain of 
finance has specifically been considered with regard to IoT. 
The paper elaborates on employing newer algorithms relevant 
to anomaly and cluster-based methods which analyze large 
streams of IoT data in an attempt to find fraudulent activities. 
The training of both supervised and unsupervised learning 
models, using historical transaction data, improved the fraud 
detection accuracy, whose credibility was then enhanced by 
adaptive learning methods through retraining and automatic 
responses to frauds. Challenges included poor data quality, 
computational complexity and enormous changes in 
dynamism of the fraud environment that dramatically 
impacted the fraud detection capability. 
A hybrid IoT platform combining cloudlet computing and 
Edge-AI, for intelligent healthcare data processing, was 
designed by Morolong, Shava, and Gamundani [19]. The 
objectives of the study included data-sharing security, low 
latency and increased quality of decision-making processes. 
Advanced AI models, including Random Forest classifiers, 
Transformer Networks and Temporal Convolutional 
Networks, were utilized in this framework. Distributed 
processing across the system was realized by cloud 
computing, cloudlet and edge layers. Stream analytics 
processing was done through Apache Flink and blockchain 
was employed for secure data exchange. However, high 
computation costs, integration challenges and being a 
bottleneck for large-scale data processing were also 
recognized as limitations in this work. Musam et al. (2023) 
[20] significantly drives the proposed method by showcasing 
the effectiveness of hybrid machine learning models for 
improved predictions, which parallels the integration of 
advanced encryption techniques for secure healthcare data 
management 
Morolong, Shava, and Gamundani [19] elevate the intelligent 
healthcare data processing capacity, a combination IoT 
platform merging cloudlet computation and Edge-AI was 
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fabricated to provide visionary-level solutions capable of 
addressing ever-growing demands made on contemporary 
medicine. The paper was constructed on critical goals 
involving safe data exchanging, low-delay messaging, as well 
as greater precision in making decisions. Utilizing high-
capability AI models including Random Forest classifiers, 
Transformer Networks, and TCNs, the system made possible 
analysis of conditions and prediction of patient status for 
increased responsiveness in addition to improved clinical 
outcome. Layering in the infrastructure maximized the best 
aspects of cloud computing, cloudlets, and edge nodes so as to 
stabilize workloads of computing in the most efficient ways, 
reducing latency associated with central processing. The 
system further applied Apache Flink for real-time stream 
analysis, whereby constant observation and rapid processing 
of data were facilitated, pivotal in critical care environments 
 Darwish et al. [21] designed a service-oriented architecture for 
the system, which runs on a Hadoop-managed server cluster 
for processing power and data storage. This allowed for 
efficient management of educational resources for remote 
learning in enormous datasets with high concurrency. Stress 
testing proved that the platform could sustain many users 
concurrently and many data transactions reliably during times 
of heavy loads. 
 
2.1. Problem Statement 
Several drawbacks yet to be addressed, particularly slow data 
transmission is a considerable hindrance when transferring a 
substantial amount of sensitive health-related data, causing 
delays to the extent that timely patient care becomes 
expectedly impossible. A lack of end-to-end encryption also 
poses security threats inasmuch as there may not be adequate 
protection of healthcare data during transmission or storage. 
The proposed work attempts to ameliorate such situations via 
making transmission faster and safer, securing strong 
encryption to protect sensitive health care information in all 
aspects of its lifecycles [22]. 
There are a set of important hindrances that prevent the stable 
operation of the sensitive healthcare data management 
process, with slow data transmission being one of the key 
factors. In settings where instantaneous decisions are 
required–like in intensive care units, emergency response 
systems, and remote-patient monitoring–there could be 
serious consequences if there is a delay to the transmittal of 
critical data. This failure to quickly exchange large amounts 
of information that is health-related from networks to network 
not only affects clinical responsiveness but also affects the 
quality-of-care delivery. Such delays might cause diagnostic 
oversights, treatment delays, or, worse still, adverse outcomes 
to the patients, especially if healthcare workers use up-to-the-
minute data for timely interventions. The existing data 
infrastructure in the health system of many countries is not 
optimized to support high-bandwidth transfers, particularly 
where network interruptions are more severe—rural or under-
equipped settings [23]. 
Apart from the transmission bottlenecks, the lack of end-to-
end encryption is also a grave threat to data privacy and 
security. Lacking strong encryption mechanisms, healthcare 
data is left exposed to interception, tampering, and 
unauthorized access throughout its movement or staying idle 
in a cloud. Considering the nature of highly sensitive medical 
records that many times contain personal identifiers, 
diagnostic results, medications histories, and insurance 
information, any leakage may lead to significant privacy 
breaches and legal ramifications as well as loss by the digital 

healthcare systems of the public trust. Besides, data breaches 
could pave ways for financial fraud, identity theft, or misuse 
of medical information. Sadly, current systems still persist 
with old security routine or partial data encryption, thus 
missing out on opportunities to protect healthcare data at 
various stages of their life cycle. 
The suggested system aims at rectifying these weaknesses by 
adopting a holistic system that guarantees speed as well as 
security of data handling. Combining the Twofish encryption–
a powerful symmetric key cryptography system, the system 
ensures maximum data protection at its collection to its final 
storage. At the same time, the implementation of WireGuard 
VPN tunnels allows low-latency, secure transfer of encrypted 
data across networks, thus, removing vulnerabilities along the 
way. Such dual-layered approach not only increases the level 
of confidentiality and integrity but also helps comply with the 
data protection regulation, including HIPAA and GDPR. The 
ultimate aim is to establish a robust digital infrastructure 
through which sensitive healthcare data can easily be moved 
across in security, thereby allowing informed decision-
making timeously and improved patient outcome. With this 
amalgamation of the latest encryption and secure transmission 
techniques, the proposed system becomes a step further to 
ensure reliable end to end protection of data in the healthcare 
sphere. 
Proposed system is addressing current weaknesses in 
healthcare data management, providing an all-inclusive, two-
layered security framework. At the centre of this technique 
lays the incorporation of Twofish encryption that is a very 
secure symmetric key algorithm, known for its speed and 
immunity to cryptographic attacks. Twofish can be utilized at 
each step of the data life cycle – from collection to storage – 
in order to safeguard sensitive health information in its 
encrypted state from unwanted access. Such a level of 
security is especially important in the sphere of healthcare, 
where concerns of patient data discreetness are extremely 
critical. 
Implementation of sophisticated AI models such as Random 
Forest classifiers, Transformer Networks, and TCNs, the 
system enabled real-time condition analysis and patient status 
prediction, enhancing responsiveness as well as clinical 
outcome. This layering of infrastructure leveraged the 
capabilities of cloud computing, cloudlets, and edge nodes to 
balance workloads of computing in an efficient manner, 
minimizing latency due to centralized processing. The system 
also employed Apache Flink for real-time stream processing, 
through which constant monitoring and speedy processing of 
data were allowed, vital within critical care settings 
 
3. Proposed Methodologies 
The proposed system for securing sensitive health data is 
showed in Figure 1. The process begins with Data Collection, 
in which patient data is collected from various sources. Once 
collected, it is then encrypted using Twofish encryption to 
keep it secure during transmission. Once encrypted, it is then 
transmitted to the cloud storage using WireGuard, which uses 
a high-performance VPN protocol for securely transporting 
the data. Finally, the last part would be the cloud storage 
itself, which keeps the data confidential and integral while 
authorizing its access. This is an effective process specifying 
a strong security solution over the life course of healthcare 
data. 
The sensitive healthcare data security is an overall multi-
layered concept intending to keep the confidentiality, 
integrity, and security of patient information within the whole 
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lifecycle of the data. The process starts with Data Collection 
in which data is sourced from multiple trusted sources, 
including the (EMRs), IoT-enabled healthcare devices, 
medical databases, and clinical monitoring systems. This step 
is highly important because it entails management of high 
volumes of very sensitive and personal information on patient 
history, diagnosis, treatment, and live health values. Rather at 
the time when any transmission occurs, this data is filtered 
and pre-processed to eliminate redundancies and unnecessary 
info by the system itself to maximise efficiency as well as 
accuracy. When refined, the data is encrypted using the two 
fish encryption which is a fast and symmetric key 
cryptographic technique that is reputable for its high key 
lengths, vulnerability to brute attacks and narrow processing 
costs. This encryption process makes sure that the healthcare 
data gets encrypted and remains unreadable and inaccessible 
to unauthorized users even in case of interception of such data 
during transit. Radhakrishnan et al. (2022) [24] notably 
reinforce the proposed method by integrating scalable cloud 
security through Salsa20 encryption and TLS, synergistically 
enhancing VPN-based protection for resilient, efficient, and 
comprehensive healthcare data safeguarding. 
After encryption, the data is sent to cloud storage via 
WireGuard, a new, lightweight VPN protocol known for high-
speed traffic and strong cryptographic security. WireGuard 
provides a secure VPN tunnel between the data origin and the 
cloud server, with encrypted data moving safely without 
vulnerability to external attacks while in transit. This tunnel is 
authenticated using public-private key exchanges, which 
validate the endpoints' identities that are communicating and 
protect against man-in-the-middle attacks. Data is 
subsequently stored in a secure environment within the cloud 
with access controls, audit trails, and data integrity checks to 
allow only authorized healthcare providers or systems to view 
or change the data [25]. 
 

 
 

Fig 1: Architecture for securing sensitive health data 
 
3.1. Data Collection 
Sensitive healthcare data collected from multiple sources, 
including electronic medical records and medical databases 
[26]. That includes health parameters along with their medical 
history, diagnoses, treatments and other critical health-related 
information. Afterward, this data goes into the processing 
phase, where (removes) irrelevant and unnecessary 
information so that relevant data is retained. This preliminary 
step is crucial in the maintenance of accuracy and efficiency 
about the data while ensuring that things remain private 
regarding patients. The prepared data then go through a 
secured encryption process where it would be transported to 
the cloud for storing and further management, thereby 
assuring the protection of sensitive healthcare information all 

through the process. Sensitive healthcare data gathered from 
various sources such as electronic medical record and medical 
database. That is health parameters and their medical history, 
diagnoses, treatments, and so on which are critical pieces of 
health-related information. Then this data enters in the 
processing phase where (removes) useless and unwanted 
information, such that only relevant data is kept. The 
integration of Decision Trees and K-Nearest Neighbours of 
Budda, 2021[27] substantially strengthens IoT security by 
reducing false positives to 3% and achieving 95% accuracy, 
enhancing Ping Flood attack detection in IoT networks This 
initial step is very necessary in ensuring that the maintenance 
of accuracy and efficiency is kept on the data as well as 
maintaining things private as far as the patients are concerned. 
Subsequently, the prepared data undergoes a secured 
encryption process, whereby it would be transported to the 
cloud for storing and further managing the same without 
necessarily posing a threat on the sensitive healthcare related 
information throughout this whole process. 
 
3.2. Encryption 
After all the data has been collected, it goes through the 
process of encryption through a confidentiality and integrity 
step meant for sensitive healthcare data. Then, the collected 
data is encrypted using twofish encryption algorithm. This is a 
symmetric-key cipher that is very strong and has advantages 
of fast processing. In the Twofish encryption algorithm, the 
data are encrypted before transmission into cloud storage to 
ensure that unauthorized persons cannot read the data [28]. The 
algorithm accepts up to a 256-bits long key, which guarantees 
very high security. Thus, the data will be rendered secure and 
unreadable by, in case it gets intercepted during transmission 
or accessed by users without any permission has been utilized 
by the system in securing sensitive healthcare information-
from the time of collection to transmission and storage-of 
patient records and health metrics [29]. Avalanche Effect also 
plays an important role in securing the encryption process; a 
minor change in the input (a single bit) causes a dramatic 
avalanche effect and unpredictable effect on the ciphertext. 
Thus, from the viewpoint of an attacker, it becomes 
impossible to decipher the encrypted data based on any 
identifiable pattern, thereby making it less susceptible to 
cryptanalysis and improving the overall security  
Collected sensitive healthcare data goes through an intense 
encryption process to achieve confidentiality and data 
integrity. This is a key security effort to ensure that patient 
records and health metrics are not accessed or messed up by 
unauthorized personnel. It uses Twofish encryption algorithm, 
a strong symmetric-key encryption known for its efficiency 
and strength. Twofish makes data confidential prior to being 
sent to cloud storage, where confidential information will 
remain unreadable for unauthorized users who happen to get 
hold of it. This encryption type will provide Lenovo Secure 
Thoughts Application key lengths of up to 256 bits that, in 
turn, provides a tough barrier against probable security 
threats. At the point of data collection to the transmission and 
storage, Twofish encryption is incorporated in the system, to 
ensure that sensitive healthcare information is most protected. 
The research work by Bhavya Kadiyala et al. (2023) [30] 
validates using hybrid encryption-communication models, 
extensively supporting this proposed secure healthcare 
framework through proven improvements in data protection, 
scalability, and efficiency.. 
For Twofish encryption, the general process can be expressed 
as follows, 
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Let, as Plaintext (128-bit block),  as Key (up to 256 bits) 
and  as Ciphertext (128-bit block). 
The encryption process is summarized as equation (1), 
 

  (1) 
 
Where,  is the Twofish encryption function that 
transforms the plaintext  using the key K, F includes 
multiple rounds of operations such as substitution using S-
boxes, key mixing and permutation. 
Mathematically,  can be written as a composition of 
multiple rounds  (16 rounds in Twofish), where each round 
applies a function using the subkey derived from the original 
key and it’s represented as equation (2), 
 

  (2) 
 
In each round of Twofish encryption, the input is XORed with 
a round key derived from the main key (key mixing). Then, 
substitution is performed using S-boxes for non-linear 
transformations. Finally, permutation shuffles the bits to 
ensure diffusion, spreading the influence of each bit across the 
output. 
The final result after 16 rounds is the ciphertext . 
 
3.3 Secure Transmission in Cloud 
After the data is encrypted, it gets safely transmitted under 
Wire Guard. All data transmits securely under lately called a 
modern high-performance VPN protocol. Secure transmission 
through Wire Guard begins by establishing a secured VPN 
tunnel between two endpoints that are authenticated to each 
other reciprocally through a public-private key pair exchange. 
After the building of the tunnel, confidentiality and data 
integrity due to encryption by a certain type of algorithm will 
govern the data being transmitted. The encrypted data, 
therefore, transits securely via the established VPN tunnel to 
the destination, where it is safe from view or modification by 
any unauthorized third party. The encrypted data is decrypted 
using the recipient’s private key with integrity checking once 
they are in the designated destination. Wire Guard is 
especially known for low latency and small overhead, 
ensuring the effective yet secure transmission of data. 
minimizes latency and overhead at all times, hence 
minimizing resource use for a much-enhanced experience for 
real-time applications within the healthcare system. By using 
WireGuard, encrypted healthcare data packets are directly 
sent without being written on with any unauthorized access or 
interference during transit, ensuring their privacy and 
compliance with data protection standards. 
Once the sensitive healthcare data has been encrypted with 
Twofish algorithm, it is transmitted in secure manner through 
WireGuard (VPN) that is modern and high performance 
protocol [31]. WireGuard is a lightweight program, secure as 
well as efficient, so it is particularly suitable for real-time and 
resource-critical applications like in healthcare. The process 
starts by setting up a secure communicating terminal or a 
VPN tunnel between the sender and receiver [32]. This tunnel 
involves a public-private key pair exchange, whereby each 
end-point validates each other to ensure the availing of data 
between the trusted sources. The authentication process itself 
guarantees that any third party who would try to intercept or 
even access the data without receiving the appropriate 
authorization is automatically cut off from the communication 

loop. The tunnel, after created, can be used as a secure 
conduit through which all the health care data encrypted is 
transferred through. 
In this tunnel, details of data remain protected and kept 
against tampering. The encrypted packets are not subjected to 
intermediate networks or systems through which intermediate 
vulnerabilities are eliminated drastically, thereby reducing the 
risk of leakage of information or unauthorized access to the 
data. Wire Guard implementation of contemporary 
cryptographic primitives, namely ChaCha20 for encryption 
and Poly1305 for message authentication makes sure that, in 
case data packets are intercepted, they would be in form of 
unreadable and unverifiable data without the corresponding 
keys. At the receiving end, the data is decrypted using the 
private key of the recipient with inbuilt integrity checks to 
assure that the data is not tampered or altered in the course of 
the data transfer. This ensures the data comes in a natural 
form, not tampered with, preserving confidentiality, accuracy, 
and integrity that is highly needed in processing sensitive 
patient data. The ease and efficiency with which Wire Guard 
has been designed also decreases its possible failure points 
and makes the implementation’s auditing easier, which 
contributes to a more secure system. The approach by Swapna 
Narla et al (2019) [33]. Inspired this method by demonstrating 
high-accuracy cloud-based health analytics, driving the need 
for secure transmission and storage protocol integration. 
The Wire Guard will be of specific importance in healthcare 
settings, considering its low latency, minimal computational 
overhead, as well as the high throughput, which are key 
aspects of efficient processing of high-rate or time-critical 
medical data. For such examples as remote patient monitoring 
or telemedicine, or IoT based diagnostic tools such benefits 
mean faster and more secure transfer of data utilizing the 
minimum number of resources. Compared to the traditional 
VPN protocols that may create significant delays or 
complicated settings, the Wire Guard provides streamlined 
VPN-performance, allowing instantaneous data transfer, even 
though limited networks. In addition, its tiny codebase makes 
it easy to uphold and verify while minimizing the attack 
surface to the DSL casing in comparison to bloated VPN 
alternatives. With the implementation of Wire Guard, the 
proposed system guarantees smooth and safe delivery of 
encrypted data on healthcare without a risk of interception or 
manipulation that complies with privacy regulations like 
HIPAA and GDPR. This implementation is an essential part 
of the development of end-to-end data security that will 
establish the trust and reliability needed for the contemporary 
digital healthcare infrastructures. 
 
Common Threats to Cloud Data Transmission 
Cloud data transmission is prone to a number of threats that 
are capable of undermining the confidentiality, integrity, and 
availability of confidential data. Perhaps the most popular 
threat is the MitM attack where an attacker intercepts 
communication between a user and a cloud service with the 
prospect of changing or stealing data. Likewise, through 
eavesdropping and packet sniffing, attackers will be able to 
follow unencrypted data transmissions of which sensitive 
information such as login credentials or personal data can be 
intercepted. Data tampering is another big issue where data is 
deliberately altered as it is being transmitted, creating 
misinformation or system failure. Session-hijacking also 
raises the threat, since the attackers make use of session-
tokens to gain unfavoured access to user accounts or services. 
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Other major threats are replay attacks, where captured data is 
resent to trick the system to unintended operations, and DNS 
spoofing, which misleads users to false cloud services where 
they are used to steal credentials or transmit malwares. These 
attacks are also exacerbated by insider threats, where 
individuals that have rightful access to information misuse 
their position to intercept or leak data. In order to address 
these risks, strong security measures like end-to-end 
encryption, secure authentication protocol, digital signatures, 
and round-the-clock monitoring systems need to be put in 
place. It is not only the protection of privacy of users but also 
their trust and reliability in cloud services. 
 
DNS Spoofing and Redirection 
DNS spoofing and redirection is an attack where an attacker 
corrupts the DNS responses to refer a user to a malicious or 
fraudulent website as opposed to a legitimate website. DNS is 
like the phone book of the internet which allows converting 
human-readable names into the internet machines known 
representation. In the DNS spoofing, an attacker alters DNS 
records, whether taking over DNS servers, or spoofing DNS 
traffic to make the fake IP address to be returned. This has the 
effect of actively redirecting users to malicious sites, 
extremely similar to legitimate sites, commonly used for 
phishing, credential theft, or malware spreading [34]. 

This attack is particularly dangerous because it is rather 
difficult to distinguish by an average user. It doesn’t mean 
that even if a user enters the proper website address, the 
browser may be hijacked because of the tampered DNS reply 
[35]. It is a method that attackers can use to steal login 
credentials, install spyware, or to conduct man-in-the-middle 
attacks. To defend against DNS spoofing and redirection, the 
companies can take such security measures as DNSSEC 
cryptographically verifying responses from the DNS, using 
encrypted DNS protocols such as DNS over HTTPS (DoH) or 
DNS over TLS (DoT). In addition, it is possible to make DNS 
servers more secure and monitor the traffic for anomalies that 
can decrease the probability of such attacks. 
 
4. Results 
The results segment evaluates crucial performance metrics of 
the proposed system. The analysis entails cloud storage speed, 
encryption time and Avalanche Effect across encryption trials. 
These metrics showcase the performance, efficiency and 
security of the system under different conditions so that one 
can look into its strengths and weaknesses further. Yalla’s 
(2023) [36] model enhances the proposed method by 
combining encryption with efficient scheduling, achieving 
high accuracy and encryption strength, thereby ensuring 
secure, reliable, and optimized healthcare data management. 

 

 
 

Fig 2: Security Strength 
 

Figure 2 shows the trends of security strength with respect to 
the intervals of time. As the chart shows, the measurement of 
security strength varies between 22%-97% for particular time 
windows with high peaks at specific intervals such as 2 
(83%), 5 (97%) and 9 (92%) of the timeline. It started low at 
the first-time interval (22%), rose sharply above that and then 
stabilized at high levels, showing that the mechanism of 
security becomes stronger over time. Trends would indicate 
that security performance of the system improves gradually, 
with the intermittent fluctuations showing resilience and 
effectiveness of the security measures applied [37]. 
The graph called “Security Strength over Time” illustrates the 
way in which the security strength (in percentage) changes for 
various stretches of time. Sequential time intervals are 
represented by the x-axis and while the security strength, 
represented on the y-axis, is used in the form of a percentage. 

At first, the security strength is rather low at approximately 
22% but it quickly increases to more than 80% at the second 
interval. The graph shows fluctuations after such a spike with 
peaks and troughs over the next intervals. The maximum 
possible level of security strength gets to within 98% of the 
value by the middle of the fifth period of time. 
Such fluctuations indicate that the evaluated security 
measures or protocols are dynamic and open to change-
possibly because of updates or adaptions, or due to an 
external influence on system resilience. In spite of the 
variations, the general trend points towards a trend towards 
enhanced security strength getting stabilized over time, 
particularly in the later intervals where the strength lies above 
90%. This might mean that the system is having increased 
resistance causing it to adapt to threats better and thus being 
kept in more secure manner. 
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Fig 3: Encryption Time vs Multiplication Depth 
 

Figure 3 shows how encryption time varies with the increase 
in multiplication depth. The association states that as the 
multiplication depth varies from 0 to 7, the encryption time 
also changes, with values ranging from about 0.10 seconds at 
depth 0 to around 0.35 seconds at depth 7. The blue dashed 

line indicates a linear growth in encryption time as the 
multiplication depth increases. This results in higher 
multiplication depths being more complex in computations 
and therefore longer encryption times are taken as well [38]. 

 

 
 

Fig 4: Avalanche Effect over Encryption 
 

Figure 4 presents the Avalanche Effect through a number of 
encryption attempts. The plot shows how the Avalanche 
Effect varies from 56% to 61%. Starting from 58% in 
encryption attempt 1, it rises to a peak value of 61.2% at 
attempt 8 and then gradually returns to 58% at attempt 20. 
The dashed line indicates possible increase then final 
stabilization of the Avalanche Effect that describes how 
minute changes in the input affect the ciphertext; this is 
critical for the determination of the security of the encryption 
algorithm. The integration of federated models by Sareddy 

and Hemnath (2019) [39] strengthens this proposed encryption-
transmission framework by showcasing decentralized, secure, 
and low-latency architectures ideal for protecting sensitive 
healthcare data. 
Graph titled as “Encryption Time vs Multiplication Depth” 
can be used to depict the relation between encryption time (in 
seconds) and multiplication depth in a homomorphic 
encryption system. The multiplication depth is represented by 
the x-axis, which indicates the number of the multiplicative 
actions that can be made on the ciphertexts without 
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decryption. The right-hand y-axis represents the 
corresponding encryption time for each depth. One can 
explain from the graph that as the level of multiplications 
rises the time of encryptions also rises. This trend is 
illustrated by a dashed blue line with dots, having the linear or 
mildly exponential growth pattern. 
It is possible to explain this increased time for encryption due 
to the larger depth of multiplication by the growing 
computational complexity and the need for more resources in 

deeper homomorphic calculations [40]. A multiplication depth 
at a deeper level enables more complicated encrypted 
operations but will necessitate more advanced encryption 
level with a larger set of parameters, hence further processing 
load. The above graphical representation shows a crucial 
trade-off in Homomorphic encryption. Where whereas deeper 
computation capability is achieved the delays needed in 
encryption will be prolonged as well which may affect the 
system performance and scalability [41]. 

 

 
 

Fig 5: Cloud Storage Speed 
 

Cloud storage upload and download speeds (in Mbps) with 
respect to 10 times are given in figure 5. Upload speed 
represented by the magenta line shows fluctuations between 
around 75 Mbps and 95 Mbps, with the highest peaks at 1, 3, 
5 and 9 intervals of time. Opposing that, the download speed 
represented by the yellow dashed line ranges between 65 
Mbps and 85 Mbps and also dips at 3, 6 and 8 times. This 
different speed shows that cloud storage services are not 
consistent as upload speeds are always higher than download 
speeds in all intervals. Ayyadurai’s (2023) [42] groundbreaking 
Authorized Public Auditing Scheme fortifies the proposed 
method by guaranteeing ironclad data integrity using cutting-
edge digital signatures, Proof of Retrievability, and robust 

TLS/SSL protocols, thwarting all tampering and unauthorized 
cloud breaches. 
The graph of "Encryption Time vs Multiplication Depth" 
demonstrates the increase in time for encryption with the 
increase in multiplication depth in a homomorphic encrypting 
scheme. The x-axis names the multiplication depth that means 
the number of allowed consecutive multiplicative operations 
on encrypted data without decryption in between. The y-axis 
names the encryption time in second, from 0.10 seconds at the 
0-depth to 0.35 seconds in the 7-depth. The plotted line 
continues upward steadily, expressing the linear relationship 
between the encryption time and the multiplication depth [43]. 

 

 
 

Fig 6: Encryption Vs Multiplication Depth 
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This linear growth is an indication of a certain rate of increase 
of the total processing time with respect to encryption 
complexity that is by allowing deeper operations. Scalability 
is expected to be positive because performance degradation 
remains underrated when stronger encryption parameters 
come into play. Such predictability is of high consideration in 
critical time-bounded applications such as healthcare data 
protection, wherein both high security and acceptable 
processing speeds must be confirmed. The very nature of 
homomorphic encryption facilitates secure computations over 
encrypted data, while the graph proves that the system can 
scale without any excessive delays. Sharadha Kodadi’s (2022) 
[44] approach is useful because it shows how secure and 
efficient cloud-based prediction and resource optimization can 
be, motivating the proposed method to adopt strong 
encryption and fast transmission for enhanced healthcare data 
protection. 

The "Cloud Storage Performance over Time" graph shows 
download and upload speed variation across 10 test periods. 
The horizontal axis is sequential test periods, and the vertical 
axis is speed measured in megabits per second (Mbps). Two 
lines are drawn: a blue dashed line with circles representing 
download speed, and a green dashed line with squares 
representing upload speed. From the graph, we can see that 
upload speeds always exceed download speeds, varying 
between 75 Mbps and 95 Mbps, while download speeds vary 
between 65 Mbps and 85 Mbps. Both values fluctuate, 
indicating volatility in cloud storage performance perhaps due 
to network conditions or server load. However, the overall 
speeds are quite high and consistent, reflecting the system's 
suitability for managing healthcare data transmissions that 
demand both reliability and efficiency. 

 

 
 

Fig 7: Cloud Storage Performance Over time 
 

5. Conclusions and Future Enhancements 
This paper presents a robust system that ensures the 
protection of sensitive healthcare data through the use of the 
Twofish encryption algorithm, WireGuard for secure 
transmission and cloud storage for data management. The 
proposed system guarantees the confidentiality, integrity and 
secure transmission of healthcare data throughout its entire 
lifecycle. The encryption strength fluctuates between 22% and 
97% across different time intervals, with notable peaks at 
83% in interval 2 and 97% in interval 5, highlighting 
improvements in security performance over time. Testing 
results showed that cloud storage download speeds fluctuate 
between 65-85 Mbps, while upload speeds range from 75-95 
Mbps, indicating some variability in cloud storage 
performance. The Avalanche Effect fluctuates between 56% 
and 61%, ensuring that small changes in the input result in 
substantial, unpredictable changes in the ciphertext, 
enhancing the system’s resistance to cryptanalysis. 
Encryption time increases linearly with multiplication depth, 
ranging from 0.10 seconds at depth 0 to 0.35 seconds at depth 
7, demonstrating the system’s ability to scale encryption 
strength while maintaining predictable processing times. 
Addressing challenges like slow data transmission and lack of 
end-to-end encryption in existing systems, future work can 
focus on integrating automated threat intelligence to 
dynamically monitor and respond to emerging security 
threats, further strengthening the system’s resilience and 

security over time. Additional to the problem is the use of 
centralized data storage systems which by nature means single 
point of failure. A breach, system error or malfunction in such 
an infrastructure may culminate in leaking of large quantities 
of confidential patient data in one exposure event. Also, 
traditional access control mechanisms often heavily rely on 
the basic authentication of the password type without 
incorporating more sophisticated security means such as MFA 
or biometrical verification. This makes systems vulnerable to 
unauthorized entry attacks, phishing attacks, and credential 
stealing. With cyber threats getting sophisticated and more 
relentless by the day, it is apparent that static security 
mechanisms that are out of date cannot effectively protect 
healthcare data anymore. There is an immediate call for 
migration to the modern and adaptive security infrastructures 
that adopt strong encryption, decentralized architectures and 
smart access control mechanisms as to provide complete 
safeguards to the privacy of patients and the system [45]. 
This paper is the presentation of a complete and robust 
security system that aims to safeguard sensitive healthcare 
data with the help of multi-layered-security-architecture 
framework. The incorporation of the Twofish encryption 
algorithm, WireGuard for secure data transmission, and cloud 
storage for convenient management of data ensure end-to-end 
protection of healthcare data during its entire lifecycle by the 
proposed system [46]. The effectiveness of the system is 
illustrated from its performance metrics: encryption strength 
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ranges between 22% and 97% for different time intervals, 
with strong peaks of 83% and 97% observed at intervals 2 and 
5, respectively-which shows progressive strengthening of 
security. Cloud storage performance is moderately varied, 
with download speeds of 65–85 Mbps and upload rates 
between 75–95 Mbps, a realistic light load pattern in changing 
network set-ups. Besides, the system yields some Avalanche 
Effect between 56% and 61%, indicating its capability in 
creating significant changes in ciphertext despite the slightest 
changes in plaintext, thus enhancing its strength against 
cryptanalysis. The encryption time scales linearly with the 
multiplication depth: from 0.10s at depth 0 to 0.35s at depth 7, 
providing a consistent scaling without undesired performance 
drops. The research work of Poovendran Alagarsundaram 
(2020) [47] on cloud-based DDoS detection inspired this 
proposed work focus on, low-latency, and cloud-adaptive 
security, guiding the integration for safeguarding sensitive 
healthcare data effectively. 
The proposed system addresses the major issues with existing 
infrastructures for securing healthcare data, beyond technical 
performance matters. Traditionally, centralized data storage 
systems put all the eggs in one basket, creating a hugely risky 
scenario, wherein a breach or error could result in a massive 
exposure of sensitive patient data. Also, a rudimentary 
authentication scheme, such as choosing a password, is what 
basically keeps it open to being flagged by some phishing 
attack or credential theft. With cyber threats growing 
advanced and relentless, the old static security paradigm 
simply cannot work anymore. This paper firmly advocates 
that the building blocks of the current security framework 
must be cast aside in Favor of an adaptive, next-generation 
framework featuring strong encryption, decentralized data 
storage, and intelligent access control such as multi-factor 
authentication and biometric verification. Such measures 
would ensure higher privacy guarantees and uphold integrity 
while supporting a resilient defense posture against modern 
cyber threats with future-proof capabilities. 
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