

Electron Impact Excitation of Single 114Fl, 115Uup, 116Uuh, 117Uus, 118Uuo Atoms N and N_i Subshells Ionization Cross Section by using Lotz's Equations

*1Mahmut Aydinol

^{*1}Dicle University, Institute of Scientific Studies, Diyarbakir, Turkey.

Abstract

N shell and seven N subshells ionization cross sections σ_N and σ_{Ni} (i = 1, ..., 7) following electron impact on 114Fl, 115Uup, 116Uuh, 117Uus, 118Uuo atoms calculated. By using Lotz's equation in Matlab ionization cross section values obtained for 24 electron impact energy values in first ionization energy to five times ionization energy range for each atom. Lotz's parameters and special commands used for each ionization cross sections calculations. Starting all most from ionization threshold values; σ_N and σ_{Ni} are increasing rapidly with electron impact energy E_o . For higher E_o values this increments getting smaller for every N_i subshells. For smaller E_o energy close to threshold all σ_N and σ_{Ni} decrease. For a fixed electron impact energy while Z value increases from $114 \le Z \le 118$; ionization cross sections decrease with Z. Results may help to understand similar findings which obtained from other electron impact excitation of N_i subshells σ_N and σ_{Ni} studies for similar size single atoms.

Keywords: N_i subshells ionization cross section, 114Fl, 115Uup, 116Uuh, 117Uus, 118Uuo calculations, Electron impact on single atoms (114 \leq Z \leq 118), Lotz's equations

1. Introduction

N subshell inner-shell ionization cross section studies σ_N and σ_{Ni} of atoms by electron impact are subjects of ongoing research for many years ^[1, 2, 5-8]. Inner shell ionization cross section information help us to understand, characterization of used target atoms in the following fields: astrophysics, plasma physics, radiation protection, design of instruments, energy transfer by electron impact on or in tissues study required ^{[5, 6,} ^{7, 8, 9-21]}. In this study, N shell and N_i σ_N and σ_{Ni} (i =1,2,..,7) for 114Fl, 115Uup, 116Uuh, 117Uus, 118Uuo atoms are calculated. For each of atoms, 24 electron impact energy values E_{oi} are used. E_{oi} values were chosen in the $E_{Ni} < E_{oi} < 7,5$. E_{Ni} range for each atom. E_{Ni} is the binding energy of that N_i (i =1,..,7) subshells. If a neutral atom A bombarded by an electron with sufficiently big E_{oi} under $E_{Ni} < E_{oi}$ conditions, atom A becomes excited ions A^{+*} at ith N_i subshell. In addition to the scattered electron, probably an electron is ejected with specific energy from the proper subshell respectively. Creation of electron holes in Ni subshells depends on how big the E_{oi} compare to E_{Ni} . Lotz put forward a semi-empirical formula at $^{[1,2]}$, for calculation of σ_N and σ_{Ni} for low energetic electron impact excitation of free atoms at inner shells which was based on Born Approximation(BA)^[1, 2, 6]. He added a correction factor as a multiplier to the Bethe formula for developing Lotz equation ^[1, 2]. Calculations for σ_N and σ_{Ni} of Z = 114 to Z = 118 atoms carried out by using Lotz equations in Matlab program [8, 14, 15]

 $\sigma_{Ni} = a_i q_i [ln(E_o / E_i) / E_o E_i] [1 - b_i \exp(-c_i (E_o / E_i))] (1)$

a_i, b_i, c_i constants and q_i of the ith subshell which are taken from Lotz ^[1, 2]. q_i are the number of equivalent electrons at ith N_i subshell and E_i is the binding energy of the ith subshell. σ_{Ni} are the ionization cross section of ith subshells. By using the Equation.1 and using sum of calculated 7 σ_{Ni} subshells of each atom for 24 values of E_{oi} σ_{Ni} shell σ_{Ntotal} were calculated.

2. Method

N shell σ_{Ntotal} and σ_{Ni} subshells ionization cross sections of 114Fl, 115Uup, 116Uuh, 117Uus, 118Uuo atoms are calculated. Calculations done for 24 Eoi values which they chosen in energy range of E_{Ni} E_{oi} ≤9,64E_{Ni} for each atom. E_{oi} calculations repeated for σ_N and σ_{Ni} (i =1, 2, ..,7) of $_{114}Fl$ to 118Uuo. It means that for 114Fl Flevorium used over all Eoi values fall in 1400eV \leq E_o \leq 13500eV range. E_{oi} chosen according to the electron binding energies of E_{Ni} values of targeted atom which most of them estimated under the guidence of Gwyn, and Porter ^[3, 4]. Calculations carried out by using written commands for Lotz's Equation.1 in Matlab for each atom [1, 2, 8, 9]. The similar values of a_i , b_i , c_i and q_i are given in the same order for Ni subshells as an example set: for ai equal to (4e-14 4e-14 4e-14 2e-14 2e-14 1.5e-14 1.35e- $14)10^{-14}$ cm²(eV)²; for b_i equal to (0.3 0.5 0.5 0.94 0.94 0.97 0.95); for $c_i = 0.3 \ 0.5 \ 0.5 \ 0.15 \ 0.15 \ 0.11 \ 0.10$), and for $q_i = (2 \ 0.95)$ 2 4 4 6 5 3.5) values used [1-2, 8]. By using sum of calculated

7 σ_{Ni} subshells of atoms for 24 values of E_{oi} and N shell σ_{Ntotal} of each atom calculated. Used estimated electron binding

energies of these atoms given in Table.A.^[3, 4].

Name of Atom	N ₁ E _{N1} (eV)	N ₂ E _{N2} (eV)	N ₃ E _{N3} (eV))	N4 En4(eV)	N5 En5(eV)	N ₆ E _{N6} (eV)	N7 EN7(eV))
114Fl Flevorium	1501	1328	1087	816	771	414	403
115Uup	1560	1380	1123	846	798	436	424
116Uuh	1620	1438	1165	880	829	460	445
117Uus	1665	1498	1207	916	862	484	470
118Uuso	1744	1558	1249	955	898	511	495

 Table A: Used electron binding energies of Ni subshells of 114Fl, 115Uup, 116Uuh, 117Uus, 118Uuo atoms given in eV. ^[3, 4]. Please notice that subshells numbered from inner side to outer side of the atoms. Tablo değerleri kontrol edilecek??

3. Results

Nonrelativistic calculations for $\sigma^{nrel}{}_N$ and $\sigma^{nrel}{}_{Ni}$ of ${}_{114}Fl$, 115Uup, 116Uuh, 117Uus, 118Uuo and for 24 Eoi are given in Table 1 to 5 under the name of each atom. These are nonrelativistic data similar to our earlier study which were carried out for E_{0i} electron impact energy close to N subshell ionization threshold energy values of 114Fl, 115Uup, 116Uuh, 117Uus, 118Uuo ^[3, 14]. Each table includes nonrelativistic results for each atom. For the same atomic results also given as colored graphs in a figure which named as same as that atomic table data. These graphs helps to compare how each subshells $\sigma^{nrel}{}_{Ni}$ depends at any value of E_{0i} energy at any atom nonrelativistic N shell σ^{nrel}_{Ntotal} and N_i subshells σ^{nrel}_{Ni} calculations for each atom: $\sigma^{nrel}{}_{Ni}$ values are given in Tables 1-5 and in Figures.1-5. There are some common charcteristics of $\sigma^{\text{nrel}}_{N_i}$ for each atom very close to threshold region: 1) Seven σ^{nrel}_{Ni} for 1keV to about 4 keV electron impact of 114Fl as seeing at Figs.1a, and 1b: $\sigma^{nrel}\ N_3$ crosses the other cross sections in the following order(1, 2, 4, 5, 6,7): For instance;

 $\sigma^{nrel}_{~N1}~\sigma^{nrel}_{~N2}~\sigma^{nrel}_{~N4}$ and $\sigma^{nrel}_{~N5}$ and the $\sigma^{nrel}_{~N6}$ and $\sigma^{nrel}_{~N7;}~As$ seeing at Figs.2a and 2b for $_{115}$ Uup atom: $\sigma^{nrel}{}_{N3}$; $\sigma^{nrel}{}_{N1}$, $\sigma^{nrel}{}_{N2}, \ \sigma^{nrel}{}_{N4}, \ and \ the \ \sigma^{nrel}{}_{N6} \ and \ \sigma^{nrel}{}_{N7} \ crossed.$ For ${}_{116}Uuh,$ $\sigma^{nrel}{}_{N3}$ as seeing in Fig 3b. crosses $\sigma^{nrel}{}_{N1}, \ \sigma^{nrel}{}_{N2}, \ \sigma^{nrel}{}_{N4},$ σ^{nrel}_{N6} and σ^{nrel}_{N7} . Also, in Figure 4b and Figure 5b for 117Uus and 118_{Uuo} atoms; σ^{nrel}_{N3} crosses all subshell cross section graphs in the same order as in this order: $\sigma^{nrel}{}_{N1} \sigma^{nrel}{}_{N2} \sigma^{nrel}{}_{N4}$, σ^{nrel}_{N5} , σ^{nrel}_{N6} and σ^{nrel}_{N7} respectively. σ^{nrel}_{N3} crosses the other cross sections in the following impact energy intervals: 2,2-4keV for Z=114, 2,4 to 4,4keV for Z=115; 2,4 to 4,70keV; Z=116; 2,65 to 4,87keV; Z=117; 3 to 4,8keV; Z=117; 3,3 to 5,4keV; as seeing at Figs.1a to 5a. σ^{nrel}_{N3} crosses all other $\sigma^{nrel}{}_{Ni}$ and $\sigma^{nrel}{}_{N3}$ and crosses only $\sigma^{nrel}{}_{N3}$ at higher energies namely through end region of graphs. Each $\sigma^{nrel}{}_{Ni}$ increases differently with electron impact energy. Z dependency of ionization cross sections for about fixed $E_{0i} = 4.8$ keV impact given in Table.6 and Figs.6, 6b. All each σ^{nrel}_{Ni} decrease with atomic number $114 \le Z \le 118$.

Table 1: $_{114}$ Fl Flevorium N₁ to N₇ subshell ionization cross sections by electron impact in 10^4 b.

E ₀ (keV)	б _{N1x} 10 ⁴ b	б _{N2x} 10 ⁴ b	б _{N3x} 10 ⁴ b	б _{N4x} 10 ⁴ b	б _{N5x} 10 ⁴ b	б _{N6x} 10 ⁴ b	б _{N7x} 10 ⁴ b	б _{Ntotal} 10 ⁴ b
1,4	-0,01352	-0,0875	-0,01729	-0,00181	-0,00255	-0,00104	0,00024	-0,12347
1,8	-0,7637	-0,4721	-0,8975	-0,0945	-0,0993	0,0011	0,1207	-2,2053
2,2	-0,4364	-0,2397	-0,4193	-0,0378	0,0044	0,0754	0,1896	-0,8638
2,6	-0,2363	-0,0924	-0,1166	0,0031	0,0798	0,1321	0,2422	0,0119
2,9	-0,1337	0,0143	0,0434	0,0273	0,1246	0,1667	0,2743	0,5169
3,2	-0,0573	0,0456	0,1658	0,0475	0,1623	0,1964	0,3018	0,8621
3,4	-0,0169	0,0781	0,2321	0,0593	0,1843	0,2141	0,3181	1,0691
3,6	0,0171	0,1058	0,2886	0,0701	0,2042	0,2302	0,3327	1,2487
3,8	0,0459	0,1298	0,3372	0,0798	0,2224	0,2451	0,3462	1,4064
4	0,0703	0,1505	0,3793	0,0887	0,2391	0,2587	0,3586	1,5452
4,4	0,1092	0,1844	0,4477	0,1045	0,2684	0,2832	0,3805	1,7779
4,8	0,1381	0,2105	0,5001	0,1181	0,2936	0,3044	0,3991	1,9639
5,2	0,1598	0,2309	0,5404	0,1299	0,3154	0,3229	0,4151	2,1144
5,7	0,1797	0,2502	0,5784	0,1426	0,3388	0,3429	0,4321	2,2647
6,6	0,2022	0,2734	0,6228	0,1612	0,3724	0,372	0,4556	2,4596
7,5	0,2142	0,2867	0,6472	0,1757	0,3981	0,3943	0,4725	2,5887
8,4	0,2202	0,2939	0,659	0,1871	0,4178	0,4116	0,4844	2,674
9	0,2221	0,2964	0,6622	0,1934	0,4284	0,4208	0,4903	2,7136
9,7	0,2226	0,2976	0,6625	0,1997	0,4386	0,4298	0,4953	2,7461
10,5	0,222	0,2973	0,6597	0,2057	0,4481	0,4381	0,4991	2,772
11,2	0,2207	0,2961	0,6551	0,2101	0,4545	0,4436	0,5011	2,7812
12	0,2186	0,2936	0,6481	0,2142	0,4603	0,4486	0,5019	2,7853
12,5	0,2171	0,2917	0,6431	0,2163	0,4632	0,4511	0,5018	2,7843
13,5	0,2136	0,2874	0,632	0,2199	0,4674	0,4546	0,5006	2,7755

Fig 1a: $_{114}$ Fl Flevorium N₁ to N₇ subshell ionization cross sections by electron impact in 10^4 b.

Fig 1b: 114Fl Flevorium N1 to N7 subshell ionization cross sections by electron impact in 10⁵ b.

E ₀ (keV)	б _{N1.} 10 ⁴ b	$6_{N2.}10^4 b$	б _{N3} 10 ⁴ b	б _{N4} 10 ⁴ b	б _{N5} 10 ⁴ b	б _{№6} 10 ⁴ b	б _{N7} 10 ⁴ b	6 _{Ntotal} 10 ⁴ b
1,65	-0,00962	-0,0062	-0,01218	-0,00128	-0,00169	-0,00069	0,00041	-0,03125
2	-0,6099	-0,3804	-0,7227	-0,0763	-0,0811	0,0027	0,1036	-1,7641
2,4	-0,3632	-0,2067	-0,3651	-0,0342	-0,0097	0,0642	0,1579	-0,7568
2,8	-0,206	-0,0921	-0,1297	-0,003	0,0436	0,1121	0,2004	-0,0747
3	-0,1482	-0,0488	-0,0409	0,0098	0,0657	0,1324	0,2184	0,1884
3,2	-0,1003	-0,0123	0,034	0,0213	0,0854	0,1508	0,2347	0,4136
3,4	-0,0602	0,0189	0,0978	0,0316	0,1031	0,1676	0,2495	0,6083
3,7	-0,0114	0,0577	0,1769	0,0453	0,1267	0,1903	0,2694	0,8549
3,9	0,0152	0,0792	0,2208	0,0534	0,1407	0,2039	0,2813	0,9945
4,1	0,0379	0,0981	0,2591	0,0608	0,1536	0,2165	0,2923	1,1183
4,4	0,0663	0,1221	0,3077	0,071	0,171	0,2338	0,3073	1,2792
4,8	0,0958	0,1478	0,3597	0,0828	0,1914	0,2542	0,3247	1,4564
5,2	0,1182	0,1681	0,4004	0,0931	0,2091	0,2721	0,3398	1,6008
5,7	0,1391	0,1877	0,4395	0,1042	0,2282	0,2916	0,3561	1,7464
6,6	0,1635	0,212	0,487	0,1206	0,256	0,3202	0,379	1,9383
7,5	0,1773	0,2269	0,5154	0,1334	0,2775	0,3425	0,3961	2,0691
8,4	0,1849	0,2359	0,5316	0,1436	0,2944	0,3601	0,4088	2,1593
9	0,1877	0,2397	0,5378	0,1494	0,3037	0,3698	0,4153	2,2034
9,7	0,1895	0,2423	0,5417	0,1551	0,3129	0,3793	0,4213	2,2421
10,5	0,1901	0,2438	0,5428	0,1607	0,3216	0,3883	0,4264	2,2737
11,2	0,1898	0,2439	0,5416	0,1649	0,3278	0,3947	0,4295	2,2922
12,3	0,1882	0,2427	0,5369	0,1702	0,3356	0,4026	0,4325	2,3087
13	0,1867	0,2413	0,5326	0,173	0,3394	0,4064	0,4334	2,3128
14	0,1841	0,2385	0,5252	0,1762	0,3437	0,4104	0,4335	2,3116

Fig 2a: $_{115}U_{up}$ N₁ to N₇ subshell ionization cross sections by electron impact in 10^4 b.

E ₀ (keV)	б м1.10 ⁴ b	б _{N2.} 10 ⁴ b	б _{N3} 10 ⁴ b	б _{N4} 10 ⁴ b	б _{N5} 10 ⁴ b	б _{№6} 10 ⁴ b	б _{N7} 10 ⁴ b	б _{Ntotal} 10 ⁴ b
1,75	-0,0086	-0,00557	-0,01098	-0,00115	-0,00156	-0,00072	0,00016	-0,02842
2	-0,6369	-0,4054	-0,7862	-0,0838	-0,1045	-0,0299	0,0524	-1,9943
2,3	-0,4484	-0,2752	-0,5183	-0,0546	-0,056	0,0106	0,0877	-1,2542
2,6	-0,3147	-0,1807	-0,3242	-0,0316	-0,0177	0,0438	0,1167	-0,7084
2,9	-0,2167	-0,1098	-0,1785	-0,0129	0,0136	0,0717	0,1412	-0,2914
3,2	-0,1428	-0,0551	-0,0662	0,0027	0,0397	0,0957	0,1622	0,0362
3,4	-0,1033	-0,0251	-0,0051	0,0117	0,055	0,1099	0,1747	0,2178
3,6	-0,0699	0,0006	0,0475	0,0199	0,0688	0,1231	0,1861	0,3761
3,8	-0,0413	0,0229	0,0931	0,0273	0,0814	0,135	0,1965	0,5149
4,1	-0,0059	0,0512	0,1507	0,0373	0,0983	0,1513	0,2108	0,6937
4,4	0,0226	0,0745	0,1981	0,0462	0,1133	0,166	0,2235	0,8442
4,8	0,0525	0,0996	0,2491	0,0565	0,1309	0,1834	0,2384	1,0104
5,2	0,0755	0,1196	0,2895	0,0655	0,1461	0,1987	0,2514	1,1463
5,7	0,0974	0,1392	0,3288	0,0753	0,1626	0,2154	0,2654	1,2841
6,6	0,1233	0,1639	0,3778	0,0897	0,1868	0,2402	0,2858	1,4675
7,5	0,1388	0,1797	0,4086	0,101	0,2057	0,2598	0,3013	1,5949
8,4	0,148	0,1899	0,4278	0,1102	0,2208	0,2756	0,3133	1,6856
9	0,1519	0,1945	0,4361	0,1153	0,2292	0,2843	0,3197	1,731
9,7	0,1548	0,1982	0,4425	0,1206	0,2376	0,2932	0,3258	1,7727
10,5	0,1566	0,2008	0,4465	0,1257	0,2457	0,3016	0,3313	1,8082
11,2	0,1573	0,2021	0,4479	0,1295	0,2517	0,3079	0,3351	1,8315
12,3	0,1571	0,2024	0,447	0,1346	0,2594	0,3158	0,3393	1,8556
13	0,1564	0,202	0,4451	0,1373	0,2634	0,3198	0,3411	1,8651
14	0,1551	0,2007	0,4411	0,1405	0,2681	0,3244	0,3427	1,8726

Table 3: For $_{116}$ Lv nonrelativistic N₁ to N₇ subshell ionization cross sections by electron impact in 10^4 b.

Fig 3a: For 116Lv nonrelativistic N1 to N7 subshell ionization cross sections by electron impact in 10⁴ b

Fig 3b: For $_{116}Lv$ nonrel N₁ to N₇ subshell ionization cross sections by electron impact in 10^4 b.

E(keV)	б _{N1.} 10 ⁴ b	$\sigma_{N2.}10^4 \text{ b}$	б _{N3} 10 ⁴ b	б _{N4} 10 ⁴ b	б _{N5} 10 ⁴ b	б _{N6} 10 ⁴ b	б _{N7} 10 ⁴ b	б _{Ntot.} 10 ⁴ b
2	-0,6468	-0,4191	-0,8251	-0,088	-0,1217	-0,044	0,0151	-2,1296
2,3	-0,4619	-0,2942	-0,5698	-0,0625	-0,0757	-0,0123	0,0426	-1,4338
2,6	-0,3306	-0,2036	-0,3845	-0,0425	-0,0395	0,0137	0,0653	-0,9217
2,9	-0,234	-0,1354	-0,2452	-0,0264	-0,0099	0,0355	0,0843	-0,5311
3,2	-0,161	-0,0826	-0,1376	-0,0131	0,0147	0,0541	0,1007	-0,2248
3,4	-0,122	-0,0538	-0,0788	-0,0052	0,0291	0,0652	0,1104	-0,0551
3,6	-0,0888	-0,0289	-0,0074	0,0282	0,0018	0,0753	0,1193	0,0995
3,8	-0,0605	-0,0074	0,0158	0,0082	0,0538	0,0847	0,1275	0,2221
4,1	-0,0252	0,0201	0,0715	0,0167	0,0697	0,0974	0,1386	0,3888
4,4	0,0034	0,0427	0,1175	0,0243	0,0837	0,1089	0,1486	0,5291
4,8	0,0333	0,0673	0,1673	0,0331	0,1002	0,1225	0,1604	0,6841
5,2	0,0565	0,0869	0,2071	0,0408	0,1144	0,1344	0,1707	0,8108
5,7	0,0785	0,1063	0,2461	0,0491	0,1299	0,1476	0,1819	0,9394
6,6	0,1052	0,131	0,2955	0,0614	0,1527	0,1671	0,1984	1,1113
7,5	0,1214	0,1472	0,3276	0,0712	0,1706	0,1828	0,2113	1,2321
8,4	0,1313	0,1581	0,3485	0,0791	0,1851	0,1955	0,2214	1,319
9	0,1356	0,1631	0,3581	0,0835	0,1931	0,2027	0,227	1,3631
9,7	0,1391	0,1674	0,3662	0,0881	0,2013	0,2099	0,2324	1,4044
10,5	0,1414	0,1707	0,3721	0,0926	0,2093	0,217	0,2376	1,4407
11,2	0,1425	0,1726	0,3752	0,0961	0,2153	0,2223	0,2412	1,4652
12,3	0,1429	0,1741	0,3771	0,1007	0,2231	0,2292	0,2457	1,4928
13	0,1426	0,1743	0,3769	0,1032	0,2271	0,2328	0,2478	1,5047
14	0,1417	0,1739	0,3752	0,1062	0,232	0,2371	0,2501	1,5162
15	0,1403	0,1728	0,3723	0,1088	0,236	0,2405	0,2516	1,5223

Fig 4a: $_{117}$ Uus N_1 to N_7 subshell ionization cross sections by electron impact in 10^4 b.

Fig 4b: $_{117}$ Uus N_1 to N_7 subshell ionization cross sections by electron impact in 10^5 b.

E ₀ (keV)	$\sigma_{\rm N1.}10^4b$	$G_{N2.}10^4 b$	б _{N3} 10 ⁴ b	$\sigma_{N4}10^4 b$	$\sigma_{N5}10^4 \ b$	$\sigma_{N6}10^4 b$	$\sigma_{\rm N7} 10^4 b$	$\sigma_{Ntot} 10^4 \text{ b}$
2,2	-0,5303	-0,3477	-0,67682	-0,0725	-0,0953	-0,043	0,0195	-1,74612
2,6	-0,3495	-0,2276	-0,4263	-0,0471	-0,0524	-0,0093	0,0497	-1,0625
2,9	-0,2551	-0,1632	-0,2926	-0,0323	-0,0274	0,0111	0,0681	-0,6914
3,2	-0,1836	-0,1134	-0,1892	-0,0202	-0,0065	0,0285	0,0841	-0,4003
3,4	-0,1452	-0,0861	-0,1326	-0,0131	0,0056	0,0388	0,0934	-0,2392
3,6	-0,1125	-0,0625	-0,0838	-0,0067	0,0165	0,0483	0,1021	-0,0986
3,8	-0,0845	-0,042	-0,0414	-0,0011	0,0265	0,0571	0,1099	0,0245
4,1	-0,0495	-0,0159	0,0125	0,0067	0,0398	0,0689	0,1207	0,1832
44	-0,0213	0,0058	0,0572	0,0136	0,0516	0,0796	0,1304	0,3169
4,8	0,0088	0,0294	0,1057	0,0215	0,0654	0,0923	0,1418	0,4649
5,2	0,0321	0,0484	0,1445	0,0284	0,0774	0,1035	0,1519	0,5862
5,7	0,0545	0,0672	0,1829	0,0359	0,0905	0,1158	0,1628	0,7096
6,6	0,0819	0,0917	0,2323	0,0471	0,1096	0,1342	0,1791	0,8759
7,5	0,0989	0,1081	0,2649	0,0557	0,1248	0,1491	0,1918	0,9933
8,4	0,1096	0,1193	0,2868	0,0629	0,1371	0,1613	0,2021	1,0791
9	0,1145	0,1248	0,2973	0,067	0,1441	0,1683	0,2076	1,1236
9,7	0,1185	0,1297	0,3065	0,0711	0,1511	0,1754	0,2132	1,1655
10,5	0,1215	0,1338	0,3138	0,0753	0,1581	0,1825	0,2186	1,2036
11,2	0,1232	0,1364	0,318	0,0785	0,1634	0,1878	0,2225	1,2298
12,3	0,1244	0,1391	0,3219	0,0828	0,1703	0,1949	0,2273	1,2607
15	0,1235	0,1405	0,3216	0,0905	0,1823	0,2073	0,2344	1,3001
16	0,1224	0,1401	0,3194	0,0926	0,1854	0,2103	0,2357	1,3059

Table 5: $_{118}$ Uus N_1 to N_7 subshell ionization cross sections by electron impact in 10^4 b.

Fig 5a: 118Uus N1 to N7 subshell ionization cross sections by electron impact in 10⁴ b.

Fig 5b: 118Uus N1 to N7 subshell ionization cross sections by electron impact in 10⁴ b.

Table 6: Z dependency of σ_{Ni} subshell ionization cross section of Z=114 to 118 Atoms by 4,8 keV electron impact in 10⁴ b.

Z Atom no	б _{N1} .10 ⁴ b	б _{N2} .10 ⁴ b	б _{N3} 10 ⁴ b	б _{N4} 10 ⁴ b	б _{N5} 10 ⁴ b	б м610 ⁴ b	б _{N7} 10 ⁴ b	б _{Ntotal} 10 ⁴ b
114	0,1381	0,2105	0,5024	0,1181	0,2936	0,3044	0,3991	1,9662
115	0,0958	0,1478	0,3597	0,0828	0,1914	0,2542	0,3247	1,4564
116	0,0525	0,0996	0,2491	0,0565	0,1309	0,1834	0,2384	1,0104
117	0,0333	0,0673	0,1673	0,0331	0,1002	0,1225	0,1604	0,6841
118	0,0088	0,0294	0,1057	0,0215	0,0654	0,0923	0,1418	0,4649

Fig 6a: Z dependency of Ni subshell ionization cross section of Z=114 to 118 Atoms by 4,8 keV electron impact in 10^4 b.

Fig 6b. Z dependency of Ni subshell σ^{nrel}_{Ntotal} and Ni subshells σ^{nrel}_{Ni} of Z=114 to 118 Atoms by 4,8 keV electron impact in 10⁴ b.

4. Conclusions

Nonrelativistic N shell σ^{nrel}_{Ntotal} and N_i subshells σ^{nrel}_{Ni} for 114Fl, 115Uup, 116Uuh, 117Uus, 118Uuo atoms results given in tables and figures under the name of each atom separately. Following each table, for the same atomic results also given as colored graphs in a figure. These graphs helps to compare how each subshells $\sigma^{nrel}{}_{Ntotall}$ and N_i subshells $\sigma^{nrel}{}_{Ni}$ depends at any value of E_{0i} electron impact energy. $\sigma^{nrel}{}_N$ values are given in (b) in Tables 1-5 and in Figs.1-5. There are some common charcteristics of $\sigma^{nrel}{}_{Ni}$: For each atom very close to threshold region; 1)Seven σ^{nrel} _{Ni} For 1keV to about 4 keV electron impact of $_{114}$ Fl as seeing at Figs.1a, and 1b: σ^{nrel} N₃ crosses the other cross sections in the following order(1,2,4,5,6,7): For instance; $\sigma^{nrel}_{N1} \sigma^{nrel}_{N2} \sigma^{nrel}_{N4}$ and σ^{nrel} $_{N5}$ and the $\sigma^{nrel}{}_{N6}$ and $\sigma^{nrel}{}_{N7;}$ As seeing at Figs.2a and 2b for ¹¹⁵Uup atom: $\sigma^{nrel}{}_{N3}$; $\sigma^{nrel}{}_{N1}$, $\sigma^{nrel}{}_{N2}$, $\sigma^{nrel}{}_{N4}$, and the $\sigma^{nrel}{}_{N6}$ and σ^{nrel}_{N7} crossed. For 116Uuh, σ^{nrel}_{N3} as seeing in Fig 3b. crosses σ^{nrel}_{N1} , σ^{nrel}_{N2} , σ^{nrel}_{N4} , σ^{nrel}_{N6} and σ^{nrel}_{N7} . Also, in Figure 4b and Figure.5b for $_{117}Uus$ and 118_{Uuo} atoms; $\sigma^{nrel}\ _{N3}$ crosses all subshell cross section graphs in the same order as in this order: $\sigma^{nrel}_{N1} \sigma^{nrel}_{N2} \sigma^{nrel}_{N4}$, σ^{nrel}_{N5} , σ^{nrel}_{N6} and σ^{nrel}_{N7} respectively. $\sigma^{nrel}_{\ N3}$ crosses the other cross sections in the following impact energy intervals: 2,2-4keV for Z=114, 2,4 to 4,4keV for Z=115; 2,4 to 4,70keV; Z=116; 2,65 to 4,87keV; Z=117; 3 to 4,8keV; Z=117; 3,3 to 5,4keV; as seeing at Figs.1a to 5a. For electron impact energy range of 8-16 keV higher energies namely at the end region of graphs, each $\sigma^{nrel}{}_{Ni}$ increases differently by E₀ impact energy. But it seems to subshell electrons responding impact electron in an accord. How much Auger and Coster-Cronig transitions effects to these $\sigma^{nrel}{}_{Ni}$ cross sections? For a fixed E_{oi}=4,8keV, and while Z value changes from $_{114}Fl \le Z \le _{118}Uuo \sigma^{nrel}{}_{Ni}$ decrease with atomic number Z. It will be better if the presented results compared with single electron impact on single free atom experimental cross section measurements and with other calculations such as Distorted wave Born approximation (DWBA) and Modified Relativistic Bethe Born Approximations (MRBEB) [5-16,17-21]

Acknowledgment

I thank to DUBAP of Dicle University http://dubap.dicle.edu.tr who allowed to use computer(Reg.No:13-FF-53).

References

- 1. W. Lotz, An empirical formula for the electron-impact ionization cross-section, *Zeitschrift für Physik A Hadrons and Nuclei*. 1967; 206(2):205-211.
- W. Lotz, Electron-impact ionization cross-sections for atoms up to Z=108. Zeitschrift für Physik A, Hadrons and Nuclei. 1970; 232(2):101-107.
- M. Pessa and W. R. Newell, Electron impact ionization cross section of inner atomic shells, 2007, Physica Scripta (Sweden). 1971; 3:165-168.
- G. Williams. Electron binding energies. http://www.jlab.org/~gwyn/ebindene.html. Accessed on May 30, 2022.
- 5. B. Fred T Porter, Melvin S. Freedman, Recommended Atomic Electron Binding Energies,1s to 6p3/2, for the heavy elements Z=84 to 103, *Journal of Physical and Chemical Reference Data Tables*; pubs.aip.org, 4/1267/242275,1978.
- 6. L. Xavier, *et al.*, Cross sections for inner-shell ionization by electron impact, *J. Phys. Chem. Ref. Data*, (with 284 references), 2014; 43(1):1-105.
- M. Aydinol, D. Aydeniz, Following electron impact excitations of single Os, Pt, Hg, Pb, Po atom and also of single Rn, Ra, Th, U, Pu atom L subshells ionization cross section calculations by using Lotz's equation, AIP Conf. Proceedings, 1722,0600028 (2016); AIP Conf. Proceedings, 1722, 060001 (2016); doi: http://dx.doi.org/10.1063/1.494414
 and http://dx.doi.org/10.1063/1.4944147:BPU9 Conf., 24-27 Aug. 2015,Istanbul, Turkey.
- AKF. Haque, et al., Electron impact ionization of individual subshells and total of L and M shells of atomic targets with Z=38-92, J. of Physics B: Atomic, Molec. and Optical Physics, 50, No.5, 1-24, 2017 or at http:/iopscience.iop.org./article/10.1088/1361-6455/aa584a/meta.
- M. Aydinol, Fallowing electron impact excitation of single 74W, 75Tb,76Os, 77Ir, 78Pt,79Au, 80Hg, 81Tl atom M subshell ionization cross sections by using Lotz's equations, 2nd Intern. Symposium on Multidisiplinary Studies and Innovative Thecnologies, October 19-21, 2018, Turkey, ISMSIT Conf. Proceedings,

www.ismsitconf.org/ismsitconf@ismsitconf.org 2018, 450-453.

- M. Aydinol, Fallowing electron Impact excitation of single 58Ce, 59Pr, 60Nd, 61Pm, 62Sm, 63Eu, 64Gd, 65Tb, 66Dy, 67Ho Atom M subhell ionization cross sections by using Lotz's Equations, *TFD34 Intern. Physics Conf. 4-9th Sept. 2018 Bodrum, Turkey; AIP Conf. Proceedings 2042*, 020020(2018); http://doi.org/10.1063/1.5078892
- M. Aydinol, Fallowing electron impact excitation of single 82Pb, 83Bi, 84Po, 85At, 86Rn, 87Fr, 88Ra, 89Pa, 90Th, 91Pa Atom M subhell ionization cross sections by using Lotz's Equations, *IENSC. Proc.(ISBN:978-605-81971-3-8) Vol.1-2, p.1312-1321, 17-20, 2018, Turkey.*
- [12] M.Aydinol, Fallowing electron impact excitation of single 68Er, 69Tm, 70Yb, 71Lu 72Hf, 73Ta atom M Subhell ionization cross sections by using Lotz's equations, *IENSC Proc.(ISBN:978-605-81971-3-8)* Vol.1-2, p.1400-1406, Nov. 17-20, 2018, Turkey.
- 13. M. Aydinol., 106Sg, 107Bh, 108Hs, 109Mt, 110Ds, 111Rg, 112Cn, 113Uut, 114Fl, 115Uup, 116Lv, 117Uus,
- 14. 118Uuo atoms O subshell ionization cross sections by using Lotz's equation, *AIP Conf. Proceedings 2178*, 030024; https://doi.org/10.1063/. 1.5135422: Pubs Online: 25th Nov. 2019.
- 15. M. Aydinol, Fallowing electron impact excitation of single 84Po, 85At, 86Rn, 87Fr, 88Ra, 89Ac 90Th, 91Pa, 92U atoms N subhell ionization cross sections by using Lotz's equations. Book of Full Text Proceedings Turkish Physical Society, 36th Intern. Physics Congress (TPS36), Vol.02, No.02, pp.16-21, ISBN: 978-605-83516-9-1 15th Dec. 2020.
- M. Aydinol, Fallowing electron impact excitation of single 78Pt, 79Au, 80Hg, 81Tl, 82Pb, 83Bi atoms N subhell ionization cross Sections by using Lotz's equations, *Book* of Full Text Proceedings Turkish Physical Society, 36th Intern. Physics Congress (TPS36). ISBN:978-605-83516-9-1 15th Dec. 2020; 2(2):22-26.
- M. Aydinol, Fallowing electron impact excitation of single 30Zn,31Ga, 32Ge, 33As, 34Se, 35Br, 36Kr, 37Rb, 38Sr, 39Y, 40Zr atoms L sub shell ionization cross sections by using Lotz's equations, www.ijlret.com, India. 2022; 8(3):06-17.
- Zhao JiaNing L., An Zhu, JJ. Zhu, W.J. Tan, M.T. Niu, L Measurements of L-shell x-ray production cross sections of Ag to Sb by low-energy electron impact, Radiation Physics and Chemistry, May 2016; 122:66-72, Elsevier,

https://doi.org/10.1016/j.radphyschem.2016.01.033.

- Zhao JiaNing L., An Zhu, JJ. Zhu, M.T. Niu, Investigations of L-shell x-ray production cross sections of In and Sn by low-energy electron impact, Journal of Physics B: Atomic. Mol. and Optical Physics, 49(6):065205, http://doi.org 10.1088/0953-4075/49/6/065205, March 2016.
- M Aydinol, Fallowing electron impact excitation of single 55Cs, 56Ba, 57La, 58Ce, 59Pr, 60Nd atoms relativistic L subshells ionization cross section calculations by using Lotz's equation, www.ijlret. 2023; 9(6):01-12. 10th, India.
- 21. M. Aydinol, $_{61}$ Pm to $_{67}$ Ho relativistic $\sigma^{rel}{}_{Ni}$ subshells ionization cross sections by using Lotz's Equation; www.ijlret.com, India. 2023; 2(6):09-17.
- 22. M. Aydinol, Electron Impact Excitations of ₆₈Er, ₆₉Th, ₇₀Yb, ₇₁Lu, ₇₂Hf, ₇₃Ta, 74W Atoms Relativistic L Subshells Ionization Cross Section Calculations by Using

Lotz's Equation, *Intern. Jou. For Innovative Eng. Research IJIER www.ijieronline.com*, www.ijieronline.com, India. 2023; 2(7):01-09.