

< 67 > *Corresponding Author: Greshma P Sebastian

Automated Form Filling Using OCR and Machine Learning for Enhanced
Data Accuracy and Efficiency

*1Greshma P Sebastian and 2Thasneem Musthafa
*1Assistant Professor, Department of Computer Science and Engineering, SCMS School of Engineering and Technology, APJ Abdul Kalam

Technical University, Kerala, India.
2Student, Department of Computer Science and Engineering, SCMS School of Engineering and Technology, APJ Abdul Kalam Technical

University, Kerala, India.

Abstract
The system starts with optical character recognition (OCR) picture processing and text extraction, with an emphasis on improving image quality
and obtaining pertinent textual data. Then, to deal with missing or noisy text input and convert it into an organized format appropriate for model
training, a data preparation step is utilized. The construction and training of a machine learning model especially made for filling out forms using
the preprocessed text input forms the basis of the system. This entails investigating different machine learning algorithms, maybe involving
classification models and Natural Language Processing (NLP) methods. The trained model is integrated by the form filling engine, which then
transfers the structured text data to the appropriate form fields. Among the advantages of the system are its ability to streamline the form-filling
process and reduce human data entering. This helps in improving precision through language interpretation powered by machine learning.
Adapting to changes in form layouts and making sure that the text and picture formats are robust are challenges.

Keywords: Tesseract, OCR, YOLO, OpenCV

1. Introduction
1.1. General Background
In recent years, advancements in machine learning and
computer vision technologies have paved the way for
innovative solutions in automating labor-intensive tasks.
Among these, the extraction and utilization of information
from images have gained prominence. Image-based text
extraction, facilitated by Optical Character Recognition
(OCR) [1] tools like Tesseract [2], has become a valuable tool
in transforming unstructured visual data into machine-
readable text. This capability has found applications in
various domains, including document analysis, data entry, and
information retrieval.
The integration of machine learning models into these
processes has further enhanced their adaptability and
efficiency. Specifically, in the context of form filling, the
combination of image processing, text extraction, and
machine learning enables the development of systems capable
of automating the completion of forms by intelligently
interpreting and mapping textual content from images. This
technology not only reduces the burden of manual data entry
but also opens up possibilities for increased accuracy and
scalability across diverse form structures and layouts.

As these technologies continue to evolve, the potential for
further advancements in image-based information extraction
remains a dynamic area of research and development.

1.2. Objective
The objective of implementing the proposed machine
learning-based form-filling system is to automate and
streamline the process of completing forms by leveraging text
extracted from input images. The primary goals include
reducing manual data entry efforts, enhancing accuracy in
interpreting and mapping textual content, and providing
adaptability to diverse form layouts and structures. By
integrating image processing, OCR, and machine learning
techniques, the system aims to optimize the efficiency of
form-filling tasks, making them more time-efficient and less
prone to errors. This project seeks to contribute to the
advancement of automation technologies, particularly in the
domain of document processing, and aims to create a robust
and scalable solution for handling various types of forms with
minimal human intervention. The long-term objective is to
establish a versatile and intelligent system that can adapt to
evolving requirements and contribute to increased
productivity.

International Journal of Research
in Academic World

Received: 09/May/2024 IJRAW: 2024; 3(6):67-75 Accepted: 11/June/2024

Impact Factor (SJIF): 6.092 E-ISSN: 2583-1615

< 68 >

https://academicjournal.ijraw.com IJRAW

1.3. Scope
The scope of this project is to develop a robust machine
learning-based form-filling system that automates the
extraction of textual information from input images and
intelligently populates corresponding form fields. The project
encompasses the integration of image processing techniques
and Optical Character Recognition (OCR) tools, with a focus
on enhancing image quality and extracting accurate text data.
Data preprocessing steps will be implemented to handle
missing or noisy text data, transforming it into a structured
format suitable for machine learning tasks. The project
involves the design and training of a machine learning model,
potentially leveraging Natural Language Processing (NLP) [3]
techniques, to comprehend and map extracted text to specific
form fields. A form-filling engine will be developed, ensuring
adaptability to various form layouts and structures.
Performance evaluation will assess the accuracy and
efficiency of the system, guiding further refinements.
Optionally, a user-friendly interface may be implemented for
user interaction. The project's scope also includes the
identification of opportunities for future enhancements, such
as integrating deep learning techniques and extending the
system's capabilities to handle dynamic forms in real-time.
Overall, the project aims to create an effective, adaptable, and
efficient solution for automating form-filling tasks based on
image-derived textual data.

1.4. Organization of Report
There are five chapters in the report. The first report deals
with the general background, objective, and scope of the
project. The second chapter contains various literature
reviews related to the project. The detailed architecture and
working of the proposed system are discussed in the third
chapter. The fourth chapter contains the experimental results
and discussions. The conclusions are summarized in the final
chapter. The future scope of the given project is also added in
the last chapter. Finally, the references are given on the last
pages.

2. Literature Survey
This chapter discusses some recent research papers on
methods for Image to text conversion and pre-processing for
OCR.
The paper “Text detection and localization in scene images: a
broad review” [4] proposed approach of employing an
unsupervised method leveraging wavelet transform for the
automatic processing of text within intricate images. The
wavelet transform, a mathematical technique enabling the
decomposition of images into various frequency components,
is harnessed to adeptly identify regions likely to contain text.
Significantly, the method operates without the need for
labeled training data, autonomously analyzing images to
detect potential text areas through the distinctive features
revealed by the wavelet transform. Following text detection,
the subsequent stages involve text segmentation and
binarization. Text segmentation separates the detected text
regions from the rest of the image, while binarization converts
these segmented regions into a binary format, typically black
and white pixels.
In “Optical character recognition by open source OCR tool
tesseract: A case study” [5] Patel, Chirag, Atul Patel, and
Dharmendra Patel have conduct a study to compare between
tesseract OCR and Transym OCR. The comparative analysis
encompasses factors such as accuracy, ease of use, language
support, customization, cost implications, and application-

specific requirements. The choice between Tesseract and
Transym OCR depends on the user's specific needs, budget
constraints, and the unique characteristics of the OCR
application at hand.
“Improving OCR performance with background image
elimination” [6] forwards the idea of preprocessing image for
OCR. In preprocessing stage document images are enhanced
by leveraging the parameters of brightness and chromaticity
to improve contrast. Brightness refers to the overall intensity
of the image, and chromaticity relates to the color
information. By considering these parameters, the contrast
between text and background can be enhanced, leading to
improved OCR accuracy. Additionally, color images are
converted to grayscale during this process to simplify the
analysis and reduce computational complexity. Grayscale
conversion ensures that only intensity information is retained,
eliminating the complexities associated with color variations.
The paper “Automated text extraction from images using
OCR system” [7] aims to involves the conversion of colored
images into a binary format, where each pixel is assigned
either a black or white value based on a predefined threshold.
Binarization simplifies the subsequent character recognition
task by reducing the complexity of image data and
emphasizing the contrast between text and background. Once
the image is successfully binarized, character recognition is
applied to interpret the binary image and convert it into ASCII
text. Character recognition algorithms analyze patterns within
the binary image, identifying distinct shapes and
configurations that represent individual characters. The result
is an ASCII text representation of the content within the
image, providing a structured and machine-readable output
that can be further processed or analyzed.
The “A different image content-based retrievals using OCR
techniques” [8] proposes is employed to extract textual
information from images or messages, allowing for the
identification and retrieval of specific content. OCR
algorithms analyze the visual patterns of characters,
recognizing and translating them into text that can be
processed by computers. Once the text is successfully
recognized, the OCR system stores the extracted message in a
designated file. This file could be a text document,
spreadsheet, or any other format suitable for preserving the
recognized text. By integrating OCR into image search
processes, organizations and individuals can efficiently
extract and store textual information from images, enabling
better organization, searchability, and utilization of content
contained within visual data.
The paper “OCR post-correction for detecting adversarial text
images” [9] describes about the post correction methods
needed for OCR. In scenarios where the quality of images is
compromised due to distortions, noise, or other forms of
perturbations, OCR systems may exhibit inaccuracies in text
recognition. The post-correction algorithm acts as a remedial
measure, systematically analyzing the OCR output and
correcting errors or inaccuracies in the recognized text. It
employs sophisticated techniques to identify and rectify
misinterpreted characters, ensuring a more accurate and
reliable transcription of embedded texts within perturbed
images.
Lat, Ankit, and C. V. Jawahar proposed an unsupervised deep
learning method for text summarization in “Enhancing OCR
accuracy with super resolution” [10]. The utility of a system
that validates the wide variety of document images without
the need for pre-processing steps is characterized by its
adaptability to diverse situations where fonts, styles, and

https://academicjournal.ijraw.com/

< 69 >

https://academicjournal.ijraw.com IJRAW

languages may vary. This capability is particularly
advantageous in handling a broad spectrum of document types
without requiring tailored pre-processing for each specific
scenario. In essence, the system demonstrates versatility in
recognizing and extracting information from documents with
varying fonts, styles, and languages, eliminating the necessity
for manual adjustments or preprocessing steps to
accommodate different situations.
The paper “Selecting automatically pre-processing methods to
improve OCR performances” [11] involves various document
pre-processing methods, including noise reduction, image
enhancement, and geometric correction, are applied to these
distorted images. Multiple OCR engines are then employed to
recognize text from both the pre-processed and original
images. The evaluation includes metrics such as accuracy,
precision, and recall to quantify the impact of different pre-
processing techniques on OCR performance. By
systematically varying the types and degrees of distortions,
researchers can gain insights into the effectiveness of pre-
processing methods in enhancing OCR engine performance
across a spectrum of challenging document image.
The framework proposed by “Document image analysis using
ImageMagick and tesseract-ocr” [12] uses combination of both
ImageMagick and Tesseract-OCR. ImageMagick provides a
powerful set of tools for image processing, enabling
operations such as resizing, cropping, and color adjustments.
Integrating ImageMagick with Tesseract OCR, an optical
character recognition engine, creates a comprehensive
solution for document analysis.
In “Ocr using computer vision and machine learning” [13]
introduces an efficient and highly scalable parallel
architecture designed for the segmentation of input images
that encompass tabular data, both with and without borders.
The primary objective is to dissect these images into
individual cells while maintaining the inherent tabular
structure. Through a parallelized approach, the architecture
can process large volumes of data swiftly, making it highly
scalable and efficient. This parallel architecture not only
facilitates the segmentation of tabular content but also focuses
on reconstructing the tabular data while preserving its original
format. The notable performance improvement achieved by
this methodology serves to alleviate the laborious task of
digitizing tabular data in bulk.

Proposed System
3.1. Introduction: The proposed system is designed to
streamline the extraction of text from images, facilitate the
conversion of this textual information into a structured CSV
file, and subsequently employ the CSV data for automating
form filling processes. Leveraging advanced Optical
Character Recognition (OCR) technology, the system ensures
accurate extraction of text from images, accommodating
diverse fonts, styles, and languages.
The extracted text is organized into a CSV format,
considering variations in data presentation, and stored
securely for future use. A user-friendly interface allows users
to upload images, trigger text extraction, and manage the
generated CSV file. The system further includes a module for
automating the population of forms with CSV data, enhancing
efficiency in data entry tasks. Robust error handling
mechanisms and security measures are integrated to address
OCR inaccuracies, CSV generation errors, and form autofill
failures, ensuring reliability and data integrity. The proposed
system thus presents a comprehensive solution to expedite the
process of extracting text from images and utilizing the

information for seamless form filling, contributing to
increased productivity and reduced manual data entry efforts.
At the heart of Pixel Pinnacle lies its integration of state-of-
the-art OCR algorithms, with a particular emphasis on deep
learning-based approaches. By employing convolutional
neural networks (CNNs) [14] and recurrent neural networks
(RNNs) [15], Pixel Pinnacle achieves remarkable accuracy and
robustness in character recognition, even in the presence of
complex backgrounds, varying fonts, and skewed
perspectives.
Moreover, Pixel Pinnacle boasts a user-friendly interface that
facilitates seamless interaction with the OCR system,
allowing users to effortlessly upload images, configure
settings, and visualize recognition results. Through
meticulous attention to usability and accessibility, Pixel
Pinnacle aims to democratize access to OCR technology,
empowering users from diverse backgrounds and skill levels
to leverage its capabilities for their specific needs.

3.2. Architecture

Fig 1: Proposed System Architecture

3.3. Pytesseract Library
Pytesseract [16] is a Python library that serves as a convenient
wrapper for Google's Tesseract-OCR Engine, designed to
extract text from images. Offering seamless integration within
Python applications, Pytesseract simplifies the utilization of
Tesseract's robust optical character recognition capabilities.
Through a straightforward interface, developers can
effortlessly process images in various formats, including
JPEG, PNG, and TIFF, extracting text for subsequent analysis
or manipulation. Pytesseract's strength lies in its ease of use,
requiring minimal code to implement, making it accessible to
developers of all skill levels. Furthermore, the library
provides a range of configuration options, empowering users
to fine-tune OCR settings to suit specific use cases, such as
defining language models or adjusting segmentation modes.
Supported across multiple platforms, including Windows,
macOS, and Linux, Pytesseract offers versatility and
flexibility in building OCR solutions tailored to diverse
environments. Its active community fosters ongoing
development, support, and knowledge sharing, ensuring
Pytesseract remains a reliable and up-to-date tool for text
extraction tasks in Python applications.

3.4. You Only Look Once (YOLO)
YOLO (You Only Look Once) [17] is a family of object
detection models known for their ability to identify objects in
real-time. Unlike earlier detectors that required multiple scans

https://academicjournal.ijraw.com/

< 70 >

https://academicjournal.ijraw.com IJRAW

of an image, YOLO achieves this with a single pass through a
convolutional neural network. YOLO models come in
different versions, each offering a balance between speed and
accuracy. While YOLO may not be the most accurate
detector, its efficiency makes it a valuable tool for real-time
object detection tasks. In YOLO's world of object detection,
bounding boxes are like spotlights highlighting what the
model sees. These boxes are rectangles drawn around objects
the model identifies in an image. YOLO predicts not only the

presence of an object but also its location and size. It achieves
this by dividing the image into a grid. Each grid cell is
responsible for detecting objects within its area. YOLO
predicts bounding boxes and confidence scores for each cell.
The bounding boxes represent the center coordinates, width,
and height of the detected object relative to the grid cell. By
analyzing these bounding boxes and their corresponding
confidence scores, you can understand what objects YOLO
has spotted in the image and their precise locations.

Fig 3: YOLO Example

3.5. Data Collection
I utilized the Indian drivers license dataset for this project.
The dataset is provided by RoboFlow universe [18]. For
training purposes, name, license number, date of birth, date of
expiry, address have been labelled. Address which is
superfluous for this assignment have been deleted. About
1700 license samples make up the collection. Almost every

state license has been included in sample. Strategically
expanding the dataset with images that showcase different
lighting conditions, occlusions, or object scales can further
enhance the model's ability to handle real-world variations. In
essence, your dataset has equipped your YOLO model with
the knowledge to not only identify objects but also precisely
locate them within new images.

Fig 4: Dataset

3.6. Pre-processing
The Image preprocessing involved extraction of text from the
image using the pytesseract library. The image underwent

filtering to remove noise, resize, gray scale conversion using
the opencv [19] library to improve the accuracy of the image-
to-text conversion process. An image passing to tesseract

https://academicjournal.ijraw.com/

< 71 >

https://academicjournal.ijraw.com IJRAW

engine can cause reading all the characters residing inside in
it. Hence the input image is first passed to trained yolo model
to predict the fields to recognize text.

Fig 4: Pre-Processing.

3.6.1. Resize Image
Image resizing refers to the scaling of images. Scaling comes
in handy in many image processing as well as machine
learning applications. It helps in reducing the number of
pixels from an image and that has several advantages e.g. It
can reduce the time of training of a neural network as the
more the number of pixels in an image more is the number of
input nodes that in turn increases the complexity of the model.
It also helps in zooming in on images. Many times we need to
resize the image i.e. either shrink it or scale it up to meet the
size requirements. OpenCV provides us several interpolation
methods for resizing an image.

3.6.2. Noise Removal
Noise in images can come from various sources, like camera
sensor limitations or poor lighting conditions. It can make the
image appear grainy or speckled, hindering your ability to

analyze it clearly. OpenCV offers a toolbox of denoising
algorithms, each tackling noise differently. Some, like
averaging or Gaussian blurring, work by smoothing out the
image. They essentially blur pixels together, reducing noise
but potentially sacrificing some fine details. For a more
sophisticated approach, OpenCV provides Non-Local Means
Denoising. This technique goes beyond the immediate
neighborhood of a pixel and searches for similar patches
across the entire image. By leveraging these similarities, it
effectively removes noise while preserving image details
more effectively.

3.6.3. Gray Scale
Grayscale conversion using OpenCV involves transforming a
color image into a single-channel grayscale image, where
each pixel represents the intensity of light rather than its
color. OpenCV provides a simple and efficient method to
perform this conversion. The process typically follows a
weighted average approach, where the intensity values of the
Red (R), Green (G), and Blue (B) channels are combined to
calculate the grayscale intensity. This method accounts for
human perception of light by applying different weights to
each channel. The formula used for grayscale conversion is
usually something like:

Y=0.299×R+0.587×G+0.114×B

Where Y represents the grayscale intensity, and R, G and B
represent the intensities of the Red, Green, and Blue channels
respectively. OpenCV provides a function for converting
cv2.cvtColor() images between different color spaces. When
converting a color image to grayscale, you typically usethe
parameter cv2.cvtColor()_BGR2GRAY if the image is in
BGR format cv2.Color_RGB2GRAY or if it's in RGB format.
This function applies the aforementioned weighted average
formula to each pixel, resulting in a grayscale image where
each pixel value ranges from 0 (black) to 255 (white),
representing the intensity of light.

3.7. Tesseract Model
Tesseract OCR, developed by Google, is one of the most
popular open-source optical character recognition (OCR)
engines available today. It's designed to recognize and extract
text from images or scanned documents. Tesseract is known
for its accuracy and language support, making it widely used
for a variety of applications including document analysis, text
extraction from images, and automated data entry.
Originally developed by Hewlett-Packard in the 1980s,
Tesseract was later maintained by Google after its acquisition
of HP's OCR research team in 2006. Since then, Google has
significantly improved Tesseract, making it more accurate,
efficient, and adaptable to a wide range of languages and
scripts.

https://academicjournal.ijraw.com/

< 72 >

https://academicjournal.ijraw.com IJRAW

Fig 5: Tesseract model

The working of Tesseract OCR by Google involves a series of
intricate steps that ultimately enable it to accurately recognize
and extract text from images or scanned documents. At its
core, Tesseract employs a combination of advanced image
processing techniques and machine learning algorithms to
decipher the textual content within an image. Initially, the
input image undergoes preprocessing steps such as noise
reduction, binarization, and desk wing to enhance its
readability and ensure uniformity across different types of
input.
Following preprocessing, Tesseract employs a convolutional
neural network (CNN) architecture, which has been trained on
vast amounts of annotated text data, to analyze the patterns of
light and dark pixels within the image. This neural network
dissects the image into smaller regions, known as text blocks
or segments, and then proceeds to classify each segment into
individual characters based on its visual features.
Tesseract's recognition process is further augmented by
language models and dictionaries, which aid in resolving
ambiguities and improving accuracy, particularly when
dealing with languages with complex orthographies or

ambiguous characters. Additionally, Tesseract's modular
design allows for the integration of specialized techniques,
such as character-level confidence scoring and contextual
analysis, to further refine the recognition results. Once the
characters have been identified, Tesseract reconstructs them
into coherent words, sentences, and paragraphs.

4. Experiments and Results
4.1. Confusion Matrix
In this work, the image predicted by the model and trained
image is evaluated using the Confusion Matrix. This matrix
organizes predictions made by the model against ground truth
annotations, offering insights into the model's performance
across different classes of objects. True positives represent
correct detections where both the model and ground truth
agree on the presence of an object of a particular class. False
positives occur when the model incorrectly identifies an
object that is not present in the ground truth annotations.
Conversely, false negatives signify instances where the model
fails to detect objects that exist in the ground truth.

https://academicjournal.ijraw.com/

< 73 >

https://academicjournal.ijraw.com IJRAW

Fig 4: Confusion matrix

4.2. User Interface
The development of the web application was carried out with
Python's Django web framework [18]. Django was preferred
due to its simplicity and adaptability, which allowed for the
creation of a dynamic and expandable web application. The

application is hosted on a cloud server and can be accessed
via any web browser. The required Python packages and
libraries were installed through pip. HTML, CSS, JavaScript
and Ajax were utilized in the creation of the front-end. The
user details entered through form are then stored in database.

Fig 5: Home Page

https://academicjournal.ijraw.com/

< 74 >

https://academicjournal.ijraw.com IJRAW

Fig 6: Preview of Input Image

Fig 7: Result page

5. Conclusion & Future Scope
5.1. Conclusion
In this work, an image to text conversion model that leverages
the PyTesseract library, OpenCV library, YOLO, Tesseract
architecture and various pre-processing techniques is
proposed to generates a necessary details of ID holder from
the input image. Evaluated the model using confusion matrix
and observed that while it is able to capture some of the
important content from the input image, there is still room for
improvement. However, the results show promise and suggest
that the approach has the potential to be further developed
into a useful tool for automated data entries.
Pixel Pinnacle's success lies not only in its technical prowess
but also in its potential to drive transformative changes in data
management practices across diverse domains. By offering a
user-friendly interface, remarkable accuracy, and robust
performance, Pixel Pinnacle empowers individuals and
organizations to unlock the full potential of textual data,
facilitating informed decision-making, enhancing
productivity, and enabling new avenues for innovation.
As we reflect on our journey with Pixel Pinnacle, we are filled
with a sense of pride and accomplishment. Our project stands
as a testament to the power of collaboration, perseverance,
and innovation in tackling real-world challenges. Moving
forward, we remain committed to further refining and

enhancing Pixel Pinnacle, ensuring that it continues to meet
the evolving needs of users and remains at the forefront of
OCR technology.

5.2. Future Scope
There are several areas in which this project could be
extended in the future. First, we could explore the use of more
advanced pre-processing techniques text data, such as using
different filtering or normalization methods. Second, we
could experiment with different model architectures or fine-
tuning techniques to improve the quality of the extracted text.
Finally, we could consider deploying the model in a real-
world application, such as automated data entry application
where happens a lot of manual data entry. Overall, there are
many exciting possibilities for future work in this area, and I
believe that this project has provided a solid foundation for
further exploration.

References
1. Zdebska, Tetyana et al. "Optical Character Recognition."

Computational linguistics and intelligent systems:
proceedings of the 4nd International conference (2),
2020.

2. Dome, Saurabh, and Asha P. Sathe. "Optical charater
recognition using tesseract and classification." 2021

https://academicjournal.ijraw.com/

< 75 >

https://academicjournal.ijraw.com IJRAW

International Conference on Emerging Smart Computing
and Informatics (ESCI). IEEE, 2021.

3. Khurana, Diksha, et al. "Natural language processing:
State of the art, current trends and challenges."
Multimedia tools and applications. 2023; 82(3):3713-
3744.

4. Mahajan, Shilpa, and Rajneesh Rani. "Text detection and
localization in scene images: a broad review." Artificial
Intelligence Review. 2021; 54(6):4317-4377.

5. Patel, Chirag, Atul Patel, and Dharmendra Patel. "Optical
character recognition by open source OCR tool tesseract:
A case study." International Journal of Computer
Applications. 2012; 55(10):50-56.

6. Shen, Mande, and Hansheng Lei. "Improving OCR
performance with background image elimination." 2015
12th International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD). IEEE, 2015.

7. Kaundilya, Chandni, Diksha Chawla, and Yatin Chopra.
"Automated text extraction from images using OCR
system." 2019 6th International Conference on
Computing for Sustainable Global Development
(INDIACom). IEEE, 2019.

8. Wankhede, Poonam A., and Sudhir W. Mohod. "A
different image content-based retrievals using OCR
techniques." 2017 international conference of electronics,
communication and aerospace technology (ICECA). Vol.
2. IEEE, 2017.

9. Imam, Niddal H., Vassilios G. Vassilakis, and Dimitris
Kolovos. "OCR post-correction for detecting adversarial
text images." Journal of Information Security and
Applications 66 (2022): 103170.

10. Lat, Ankit, and C. V. Jawahar. "Enhancing OCR
accuracy with super resolution." 2018 24th International
Conference on Pattern Recognition (ICPR). IEEE, 2018.

11. Bui, Quang Anh, David Mollard, and Salvatore Tabbone.
"Selecting automatically pre-processing methods to
improve OCR performances." 2017 14th IAPR
International Conference on Document Analysis and
Recognition (ICDAR). Vol. 1. IEEE, 2017.

12. Smitha ML, Antony PJ, Sachin DN. "Document image
analysis using imagemagick and tesseract-ocr."
International Advanced Research Journal in Science,
Engineering and Technology (IARJSET). 2016; 3:108-
112.

13. Ranjan, Ashish, Varun Nagesh Jolly Behera, and
Motahar Reza. "Ocr using computer vision and machine
learning." Machine Learning Algorithms for Industrial
Applications, 2021, 83-105.

14. Ketkar, Nikhil et al. "Convolutional neural networks."
Deep Learning with Python: Learn Best Practices of
Deep Learning Models with PyTorch, 2021, 197-242.

15. Cheng, Samuel. "Recurrent neural networks." (2023).
16. Saoji, Saurabh, et al. "Text recognition and detection

from images using pytesseract." J Interdiscip Cycle Res.
2021; 13:1674-1679.

17. Diwan, Tausif, G. Anirudh, and Jitendra V. Tembhurne.
"Object detection using YOLO: Challenges, architectural
successors, datasets and applications." multimedia Tools
and Applications. 2023; 82(6):9243-9275.

18. www.universe.roboflow.com
19. Sharma, Ayushi, et al. "Object detection using OpenCV

and python." 2021 3rd international conference on
advances in computing, communication control and
networking (ICAC3N). IEEE, 2021.

https://academicjournal.ijraw.com/

