

< 76 > *Corresponding Author: Rishita Tiwari

A Comparative Analysis of Heuristic Approaches in the A* Algorithm for
Path Finding in Autonomous Vehicles

*1Rishita Tiwari, 2Ashwani Dwivedi and 3Shweta Sinha
*1, 2Student, National PG College, Lucknow, Uttar Pradesh, India.

3Assistant Professor, Department of Computer Science, National PG College, Lucknow, Uttar Pradesh, India.

Abstract
In this article, we will give a more in-depth comparison of different heuristic approaches for A* pathfinding algorithm with respect to their
implications to effectiveness calculated by computation and optimality of path. An investigation of four different heuristics—Manhattan,
Euclidean, Diagonal and a Custom Hybrid where compared based on important performance metrics: computation time and path length —in
simulation using a grid with characteristics representative of problems generally faced in the paths computed for an autonomous vehicle. The
paper serves to enlighten the different kinds of heuristics and their effects on A* algorithm efficiency, which basically expresses a trade-off
between speed and accuracy. The findings suggest that there is no one-size-fits-all heuristic; rather, it will be a custom solution tuned to the
environmental constraints that yields better performance. Such potential implications are exciting for applications in areas such as robotics,
gaming and autonomous vehicle navigation.

Keywords: A* path finding algorithm, heuristic comparison, autonomous vehicle navigation, computation time and path length.

Introduction
Pathfinding problem is a fundamental problem of artificial
intelligence, especially in autonomous vehicles, robotics and
navigation systems. Since these systems will need to make
real-time decisions capable of execution on a lot of
environmental situations with obstacles and complex terrain,
the effectiveness of any algorithm highly relies upon real-life
implementations. A* algorithm has emerged to be one of the
most practical implementations for pathfinding algorithms as
it embraces both the principles of optimality (finding the
shortest path) and efficient computation. Since it uses a
heuristic to guide the search, this algorithm takes advantage of
Dijkstra’s optimality guarantee and greedy best-first search at
quickly finding a solution [1].
At a high level, A* keeps an open list of nodes to explore
further. Then it chooses one node with the lowest cost, which
is defined as a sum of the real cost to reach that node and
some kind of prediction about how far it is to finish. The A*
algorithm performance is reliant on the heuristic function and
its ability to give us a cost estimate of reaching the goal given
that we are at a node. A wide range of heuristic methods is
available; however, each method has its limitations and
merits. In this, we use four of the most widely-used heuristics:
Manhattan, Euclidean, Diagonal and a Custom Hybrid
heuristic. The selected heuristic not only influences search
efficiency but also the quality of the path discovered. For
example, a few heuristics are Manhattan and diagonal. It will

be computationally simpler but lethargic since these may not
reach a optimum solution in most conditions, when diagonals
are allowed to move. Euclidean on the other hand is even
worse because it can get to shorter paths and at some point
more computations, but this quickly gets unacceptable for any
response time once the grid or precision used is large. The
Custom Hybrid heuristic integrates aspects of both the
Manhattan and Diagonal heuristics, thereby yielding a
solution that demonstrates adaptability across diverse
environments. This research undertakes a comparative
analysis of four distinct heuristics, aiming to evaluate their
appropriateness for various navigation tasks. Emphasis is
placed on dynamic and real-time conditions, particularly those
experienced by autonomous vehicles, thereby highlighting the
relevance of each heuristic in practical applications [9].

Methodology
In this experiment, the A* algorithm was coded using Python
in a grid-based simulation context. The grid is a
representation of the terrain over which the algorithm will
run; every cell in the grid represents a node to traverse or
block. The heuristic functions for investigation are:
• Manhattan Heuristic: It simply calculates the total of the

absolute differences in the x and y-coordinates between
the current node and the goal node. Manhattan Heuristic It
is strong where the action set permits only strictly
horizontal and vertical motion.

International Journal of Research
in Academic World

Received: 09/October/2024 IJRAW: 2024; 3(11):76-78 Accepted: 14/November/2024

Impact Factor (SJIF): 6.092 E-ISSN: 2583-1615

< 77 >

https://academicjournal.ijraw.com IJRAW

h_Manhattan = |x_goal – x_current| + |y_goal – y_current|

• Euclidean Heuristic: In Euclidean heuristic, the distance
between two points is given as a straight line with
diagonal movements. It is more precise but in case of
much computation since it involves square roots.

h_Euclidean = √((x_goal – x_current)^2 + (y_goal –

y_current)^2)

• Diagonal Heuristic: The Diagonal heuristic considers
both horizontal/vertical and diagonal move directions. It
balances the between computational efficiency and path
accuracy, so it is particularly useful for environments
which also allow diagonal movements.

h_Diagonal = min(|x_goal – x_current|, |y_goal – y_current|)

* √2 + (|x_goal – x_current| - |y_goal – y_current|)

• Custom Hybrid Heuristic: This is essentially a

combination of both the Manhattan and Diagonal
heuristics, with weights adjusted based on the
environment’s constraints. It would thus be balanced

properly between computation speed and possible path
optimality.
The experiments were carried out over a 10x10 grid. For
all heuristics, the same conditions were employed. The
performance of the algorithm was measured along the
following criteria:
Computing Time: The entire time it takes the algorithm
to find a path.
Path Length: Number of Nodes traversed by the
algorithm to reach the goal.
The evaluation was done under a number of trials to
ensure statistical significance. Results averaged to be able
to compare [7, 8].

Implementation
The A* algorithm was implemented in the Python
programming language, using standard data structures like
lists and priority queues to maintain the open and closed lists.
The heuristic functions are implemented as stand-alone
functions that are called during the execution of the algorithm
to compute the cost estimates. Thus, the overall workflow of
the A* algorithm was:

Fig 1: Flowchart of Pathfinding Algorithm Using Heuristic Cost Evaluation

https://academicjournal.ijraw.com/

< 78 >

https://academicjournal.ijraw.com IJRAW

Results
The results are analysed based on the two major factors,
which are computation time and path length.

Table 1: Comparison of Heuristic Algorithms Based on

Computation Time and Path Length

Heuristics Average Computation
Time (Seconds)

Path Length
(Nodes)

Manhattan 0.0020 14
Euclidean 0.0030 12
Diagonal 0.0025 11

Custom Hybrid 0.0030 13

Compare Computation Times: The Manhattan heuristic had
the shortest time of computation followed by Diagonal.
Euclidean and Custom Hybrid had similar though slightly
higher times due to more complex operations [5, 6].

Fig 2: Computation Time Comparison

Path Length Comparison: The Euclidean heuristic always
output the shortest paths, whereas the Diagonal heuristic
threw a relatively short path with better performance than the
Manhattan approach. Custom Hybrid heuristic performed
comparable to Diagonal heuristic but with slightly higher
computation time.

Fig 3: Path Length Comparison

Analysis
From results, it is clear that the selection heuristic influences
both running time and optimality of A*. The MHT strategy is
simple and therefore takes a shortest computation time at the
expense of longer paths. EHT, on the other hand, computes
the shortest distances for the paths at the expense of being
more computationally intense especially for large grids. The
Diagonal heuristic balances computation time with the
accuracy of paths, which should make it really attractive when
diagonal movement is allowed in an environment. The
Custom Hybrid heuristic provides a flexible solution but is
not significantly better than the competition and thus probably
has use only in targeted scenarios where movements can vary
[3, 4].

Conclusion and Future Work
This experimentation also indicates how important it is to
choose the right heuristic for pathfinding operations,
especially when we talk about autonomous vehicle navigation
application. The first would be used for environments
characterised by time and simplification, while the second is
useful in terms of precision when paths must be defined
accurately. In fact, the diagonal heuristic itself is kind of a
good middle ground between these two heuristics. The
Custom Hybrid Heuristic allows adaptability over different
environments [10, 2].
The future work can build on the adaptive heuristics that will
be developed which vary in real time with information
obtained about the environment, e.g. static/dynamic layout of
grid or obstacles. For autonomous systems, these can be
tested in more complex environments like larger city-scale
maps or obstacle-infested terrains and see the extent of
generalization achieved from them. Additionally, by using
past experiences and the current environmental features, these
machine learning based techniques can allocate or tune
heuristics dynamically on particular instances to increase the
robustness of pathfinding algorithms in practice.

References
1. Hart PE, Nilsson NJ & Raphael B. A Formal Basis for

the Heuristic Determination of Minimum Cost Paths.
IEEE Transactions on Systems Science and Cybernetics.
1968; 4(2):100-107.

2. Koul A, Greydanus S & Fern A. Learning Finite State
Representations of Recurrent Policy Networks. arXiv
preprint arXiv:1811.12530, 2018.

3. Schaeffer J et al. Pathfinding in Games and Simulation
Using A with Multiple Heuristics*. AI Game
Programming Wisdom, Charles River Media, 2001.

4. Thrun S, Burgard W & Fox D. Probabilistic Robotics.
MIT Press, 2005, 253-261.

5. Cui X & Shi H. A Pathfinding Algorithm Optimized for
Large Environments*, 2011.

6. Nash A et al. Any-Angle Path Planning. AIIDE, 2007,
23-28.

7. Gonzalez J. Evaluating A Heuristics for Optimal
Pathfinding in Dynamic Environments*, 2018.

8. Karaman S & Frazzoli E. Sampling-based Algorithms for
Optimal Motion Planning. International Journal of
Robotics Research. 2011; 30(7):846-894.

9. Wang L & Kim J. Heuristic Path Planning for
Autonomous Vehicles in Urban Traffic Scenarios. Journal
of Advanced Transportation, 2020.

10. Silver D & Huang A. Mastering the Game of Go with
Deep Neural Networks and Tree Search. Nature. 2016;
529(7587):484-489.

https://academicjournal.ijraw.com/

