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Abstract 
In this article, we will give a more in-depth comparison of different heuristic approaches for A* pathfinding algorithm with respect to their 
implications to effectiveness calculated by computation and optimality of path. An investigation of four different heuristics—Manhattan, 
Euclidean, Diagonal and a Custom Hybrid where compared based on important performance metrics: computation time and path length —in 
simulation using a grid with characteristics representative of problems generally faced in the paths computed for an autonomous vehicle. The 
paper serves to enlighten the different kinds of heuristics and their effects on A* algorithm efficiency, which basically expresses a trade-off 
between speed and accuracy. The findings suggest that there is no one-size-fits-all heuristic; rather, it will be a custom solution tuned to the 
environmental constraints that yields better performance. Such potential implications are exciting for applications in areas such as robotics, 
gaming and autonomous vehicle navigation. 
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Introduction 
Pathfinding problem is a fundamental problem of artificial 
intelligence, especially in autonomous vehicles, robotics and 
navigation systems. Since these systems will need to make 
real-time decisions capable of execution on a lot of 
environmental situations with obstacles and complex terrain, 
the effectiveness of any algorithm highly relies upon real-life 
implementations. A* algorithm has emerged to be one of the 
most practical implementations for pathfinding algorithms as 
it embraces both the principles of optimality (finding the 
shortest path) and efficient computation. Since it uses a 
heuristic to guide the search, this algorithm takes advantage of 
Dijkstra’s optimality guarantee and greedy best-first search at 
quickly finding a solution [1]. 
At a high level, A* keeps an open list of nodes to explore 
further. Then it chooses one node with the lowest cost, which 
is defined as a sum of the real cost to reach that node and 
some kind of prediction about how far it is to finish. The A* 
algorithm performance is reliant on the heuristic function and 
its ability to give us a cost estimate of reaching the goal given 
that we are at a node. A wide range of heuristic methods is 
available; however, each method has its limitations and 
merits. In this, we use four of the most widely-used heuristics: 
Manhattan, Euclidean, Diagonal and a Custom Hybrid 
heuristic. The selected heuristic not only influences search 
efficiency but also the quality of the path discovered. For 
example, a few heuristics are Manhattan and diagonal. It will 

be computationally simpler but lethargic since these may not 
reach a optimum solution in most conditions, when diagonals 
are allowed to move. Euclidean on the other hand is even 
worse because it can get to shorter paths and at some point 
more computations, but this quickly gets unacceptable for any 
response time once the grid or precision used is large. The 
Custom Hybrid heuristic integrates aspects of both the 
Manhattan and Diagonal heuristics, thereby yielding a 
solution that demonstrates adaptability across diverse 
environments. This research undertakes a comparative 
analysis of four distinct heuristics, aiming to evaluate their 
appropriateness for various navigation tasks. Emphasis is 
placed on dynamic and real-time conditions, particularly those 
experienced by autonomous vehicles, thereby highlighting the 
relevance of each heuristic in practical applications [9]. 
 
Methodology 
In this experiment, the A* algorithm was coded using Python 
in a grid-based simulation context. The grid is a 
representation of the terrain over which the algorithm will 
run; every cell in the grid represents a node to traverse or 
block. The heuristic functions for investigation are: 
• Manhattan Heuristic: It simply calculates the total of the 

absolute differences in the x and y-coordinates between 
the current node and the goal node. Manhattan Heuristic It 
is strong where the action set permits only strictly 
horizontal and vertical motion. 
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h_Manhattan = |x_goal – x_current| + |y_goal – y_current| 
 

• Euclidean Heuristic: In Euclidean heuristic, the distance 
between two points is given as a straight line with 
diagonal movements. It is more precise but in case of 
much computation since it involves square roots. 

 
h_Euclidean = √((x_goal – x_current)^2 + (y_goal – 

y_current)^2) 
 

• Diagonal Heuristic: The Diagonal heuristic considers 
both horizontal/vertical and diagonal move directions. It 
balances the between computational efficiency and path 
accuracy, so it is particularly useful for environments 
which also allow diagonal movements. 

 
h_Diagonal = min(|x_goal – x_current|, |y_goal – y_current|) 

* √2 + (|x_goal – x_current| - |y_goal – y_current|) 
 
• Custom Hybrid Heuristic: This is essentially a 

combination of both the Manhattan and Diagonal 
heuristics, with weights adjusted based on the 
environment’s constraints. It would thus be balanced 

properly between computation speed and possible path 
optimality. 
The experiments were carried out over a 10x10 grid. For 
all heuristics, the same conditions were employed. The 
performance of the algorithm was measured along the 
following criteria: 
Computing Time: The entire time it takes the algorithm 
to find a path. 
Path Length: Number of Nodes traversed by the 
algorithm to reach the goal.  
The evaluation was done under a number of trials to 
ensure statistical significance. Results averaged to be able 
to compare [7, 8]. 

 
Implementation 
The A* algorithm was implemented in the Python 
programming language, using standard data structures like 
lists and priority queues to maintain the open and closed lists. 
The heuristic functions are implemented as stand-alone 
functions that are called during the execution of the algorithm 
to compute the cost estimates. Thus, the overall workflow of 
the A* algorithm was: 

 

 
 

Fig 1: Flowchart of Pathfinding Algorithm Using Heuristic Cost Evaluation 

https://academicjournal.ijraw.com/


 

< 78 > 

https://academicjournal.ijraw.com IJRAW 

Results 
The results are analysed based on the two major factors, 
which are computation time and path length. 

 
Table 1: Comparison of Heuristic Algorithms Based on 

Computation Time and Path Length 
 

Heuristics Average Computation  
Time (Seconds) 

Path Length 
(Nodes) 

Manhattan 0.0020 14 
Euclidean 0.0030 12 
Diagonal 0.0025 11 

Custom Hybrid 0.0030 13 
 
Compare Computation Times: The Manhattan heuristic had 
the shortest time of computation followed by Diagonal. 
Euclidean and Custom Hybrid had similar though slightly 
higher times due to more complex operations [5, 6]. 
 

 
 

Fig 2: Computation Time Comparison 
 
Path Length Comparison: The Euclidean heuristic always 
output the shortest paths, whereas the Diagonal heuristic 
threw a relatively short path with better performance than the 
Manhattan approach. Custom Hybrid heuristic performed 
comparable to Diagonal heuristic but with slightly higher 
computation time. 
 

 
 

Fig 3: Path Length Comparison 
 

Analysis 
From results, it is clear that the selection heuristic influences 
both running time and optimality of A*. The MHT strategy is 
simple and therefore takes a shortest computation time at the 
expense of longer paths. EHT, on the other hand, computes 
the shortest distances for the paths at the expense of being 
more computationally intense especially for large grids. The 
Diagonal heuristic balances computation time with the 
accuracy of paths, which should make it really attractive when 
diagonal movement is allowed in an environment. The 
Custom Hybrid heuristic provides a flexible solution but is 
not significantly better than the competition and thus probably 
has use only in targeted scenarios where movements can vary 
[3, 4]. 
 
Conclusion and Future Work  
This experimentation also indicates how important it is to 
choose the right heuristic for pathfinding operations, 
especially when we talk about autonomous vehicle navigation 
application. The first would be used for environments 
characterised by time and simplification, while the second is 
useful in terms of precision when paths must be defined 
accurately. In fact, the diagonal heuristic itself is kind of a 
good middle ground between these two heuristics. The 
Custom Hybrid Heuristic allows adaptability over different 
environments [10, 2]. 
The future work can build on the adaptive heuristics that will 
be developed which vary in real time with information 
obtained about the environment, e.g. static/dynamic layout of 
grid or obstacles. For autonomous systems, these can be 
tested in more complex environments like larger city-scale 
maps or obstacle-infested terrains and see the extent of 
generalization achieved from them. Additionally, by using 
past experiences and the current environmental features, these 
machine learning based techniques can allocate or tune 
heuristics dynamically on particular instances to increase the 
robustness of pathfinding algorithms in practice. 
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