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Abstract 
We came across estimation of an unknown probability density function. This unknown density function itself may have some known constraints. 
Therefore, it is trivial to expect the same constraints from its density estimator too. In this article we consider density estimator is given or 
already estimated but it may not satisfy requirement of non-increasingness property from its known modal point. Without loss of generality we 
assume mode is equal to zero. Hence, we provide an algorithm to obtain closest non-increasing function to a given density estimator under given 
measures of closeness.  
We have described Pool Maximum Violation Region Algorithm (PMVRA) for obtaining closest non-increasing function to a given one. First we 
obtain maximum violation region of a given function, if violation of non-increasingness exists. After doing so, we give a closest constant value 
on the superset of maximum violation region when measure of closeness is Sup-norm, L1-norm and L2-norm. 
In case of Sup-norm, we found closest constant on the superset of maximum violation region as arithmetic mean of smallest and largest values of 
the function on this superset.  When measure of closeness is L1-norm, we found closest constant on the superset of maximum violation region as 
median of the function on this superset. Whereas, in case of measure of closeness is L2-norm, we found closest constant on the superset of 
maximum violation region as an arithmetic mean of the function on this superset. 
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1. Introduction 
Many times we came across estimation of density function 
(Silverman B.W. (1986) [7]. Though density function is 
unknown, it may have some known restrictions on it, like 
symmetry or unimodality or decreasing nature as its domain 
goes away from its modal value etc. (Chaubey Y.P. et. al. 
(2012) [1], Lo S. H. (1985) [2], Schuster E.G. (1975) [75]. 
Therefore, these are trivial expected constraints on its 
estimator too.  
When there is a restriction of decreasing or non-
increasingness nature on a density estimator on its positive 
support, we have to modify it in such a way that it becomes 
non-increasing as well as closest to given density estimator.  
This paper contributes Pool Maximum Violation Region 
Algorithm (PMVRA). First it finds maximum violation region 
[u, v] and then removes violation property of a function over 
region [u, v] along with rectification of function over a 
superset D of [u, v] by a constant value L*. This L* is close to 
the function over a superset D of [u, v] and closeness is 
measured on the basis of given norm.  
In every iteration of PMVRA, function is rectified over 
superset D of [u, v], therefore this algorithm requires 
minimum number of iterations to obtain closest and non-
increasing function to a given one.       

In next section we propose Pool Maximum Violation Region 
Algorithm and then obtain closest non-increasing function to 
a given density estimator closest under Sup-norm, L1-norm 
and L2-norm (Randles R. and Wolfe D. (1979) [3], Robertson 
T., Wright F.T. and Dykstra R.L.(1988) [4], Schuster E.G. 
(1991) [6]. 
 
2. Pool Maximum Violation Region Algorithm 

(PMVRA) 
Let f(x): R+ → R+ be an arbitrary function. In the following, 
for notational convenience we refer the non-increasing 
property of a function as P. Let V (f) = {x: f(x) is strictly 
increasing at x}, the set on which f(.) violates P. An interval 
(u, v) is said to be violation interval of f(.) if the function f(.) 
does not satisfy P on the interval (u, v). An interval (a, b) is 
said to be a maximal violation interval of the function f(.) if 
f(b)-f(a) ≥ f(b`) - f(a`), for any other violation interval (a`, b`). 
We modify the function f(.) to a function f1(.) by modifying 
the function f(.) by a suitable constant L on maximal violation 
interval of f(.). However, such constants at each stage of 
modification can be selected optimally under a specific norm 
(distance function). We consider the norms: (a) Sup- norm (b) 
L1- norm and (c) L2- norm. If f(.) does not violates P then 
there is no need to modify f(x). If f(.) violates the property P, 
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then there exists at least one violation interval. We assume 
that f(.) satisfies the following conditions: 
i). f(x) is finite.  

ii). , ( , (without loss of 
generality). 

iii). f(x) has a finite number of turning points (points of local 
maxima or minima). 

 
 
 
 
 
 
 

 
2.1. Development of the Algorithm  
Following is an algorithm to modify an arbitrary function f(.) to a non-increasing function. This modified function is piecewise 
constant on the set D, where D is the set on which f(.) is being modified.  
Step 1: Select the function f(.).  
Step 2: Test the given function f(.) for its violation of P. 
If there is no violation of P (that is, V (f) = Φ) then stop. Else go to Step-3.  
Step-3: Determination of modified function:  
 
Let (a, b) be a maximal violation interval of the function f(.).  
For L, f(a) ≤ L ≤ f(b),  
let a1(L) = inf{x : f(x) ≤ L}, b1(L) = sup{x : f(x) ≥ L},  
A(L) = {x : a1(L) ≤ x < ∞, L ≤ f(x) < ∞}, B(L) = {x : 0 ≤ x ≤ b1(L), 0 ≤ f(x) ≤ L}  
D(L) = A(L) ∪ B(L) = [a1(L), b1(L)].   
In the following, for notational simplicity we write a1(L), b1(L), A(L), B(L) and D(L) as a1, b1, A, B and D respectively. Note that, 
a1 ≤ a < b ≤ b1.  
Define:  

  (1) 
In the above, f1(x, L) (= f1(x) say) is the modified function and D is the domain for modification. It is to be noted that, f1(x) > L 
for x ≤ a1 and f1(x) < L for x > b1. A typical function f(x) and the corresponding sets A(L) and B(L), for some L, (f(a) < L < f(b)) 
are described in Figure-1.  
 

 
 

Fig 1: A Typical function with A(L) and B(L) for arbitrary L 
 
Here, the interval (a, b) is maximal violation interval of the function f(.). 
Step-4: Identification of two functions on disjoint intervals (if exist):  
If V (f1) = Φ then declare that f1(.) is non-increasing and stop, else identify the two functions on the disjoint intervals (0, a1) and 
(b1,∞) given by:  
f11(x) = f1(x) for 0 < x < a1 and f12(x) = f1(x) for x > b1.  
Stop identifying the domain for modification if V (f11) ∪ V (f12) = Φ, else go to Step-1 and replace f(.) by f11(.) and/ or f12(.) as the 
case may be.  
In the above, the choice of constants L’s is not unique, however these constants at each stage can be selected optimally so that the 
resulting modified function f1(x) is closest to the original function f(.) under a given distance function d(.). The algorithm 
described above is referred as the Piecewise Maximum Violation Region Algorithm for the distance function d(.) (PMVRA-d). In 
the following, we describe methods to obtain L* for a given distance measures.  
We note that the sets A(L) are decreasing in L, decrease from A(f(a)) to A(f(b)) = Φ, whereas B(L) are increasing in L, increase 
from B(f(a)) = Φ to B(f(b)). Furthermore, the difference (µ{A(L)}-µ{B(L)}) is decreasing and it has one change of sign at L (= L* 
, say), where µ(.) is an appropriate measure of a set; for example the Lebesgue measure.  
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Corresponding to the maximal violation interval (a, b) we find L*, (f(a) < L* < f(b)) such that f1(x, L*) is closest (under a norm) to 
the function f(.). We note that, f1(.) depends on L and the given function f(.); and hence for given f(.), d(f, f1), the distance between 
f(.) and f1(.) depends only on L. Let 
δ(L) = d(f, f1), for f(a) ≤ L ≤ f(b).  (2) 
Hence, to find the closest function f1(.) to f(.), it is enough to find L* such that 
δ(L* ) = Infimum{δ(L); L ∈ [f(a), f(b)]}  (3) 
Depending upon choices of distance measures d(.), we obtain respective L* ’s and develop the respective PMVRA-d. 

As f1(x, L) = f(x) for x  D, we have, d(f, f1) = d(fD, ), where fD ( ) is the confined function defined on the domain D 
obtained from f (f1). Further, as D = A ∪ B and A ∩ B = Φ, we have 
 
   (4) 
  

  (5) 
 
where dS(.) and dj(.) are sup-norm and Lj -norm, respectively. In the following we state and prove Lemma-1 and Lemma-2 and 
these are used in PMVRA under L1-norm and L2-norm. To prove these lemmas we assume that: f : f(x) : R+ → R+ and 

 Let L is an arbitrary constant such that Infimum{f(x); x ∈ R} < L < Suprimum{f(x); x ∈ R} and A(L) = {x : 
f(x) > L}. 

Lemma-1: If   then  

 

  (6) 

 

Proof: Rewrite I1(L) as,  , where SL = {(x, y) : x ϵ A(L), L < y < f(x) }and 

Λ2(.) is an area measure on a set. By definition of SL, note that SL+ ϵ  ⸦ SL for any ϵ > 0.  Now consider, I1(L) – I1(L+ ϵ). See Figure 
2. 

 
 

 

 

, where  

, where  :  (:  v-section of set W(L,ϵ)).   

, where :   (a function of (v, u) only. 

  

 
Where Λ(.) is a Lebesgue measure of a set. Hence we have proved that, 
 

. 

 

Remark: If A(L) = {x : f(x) < L} then   
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Fig 2: Difference between regions I1(L) and I1(L+ϵ) 

Lemma-2: If   then  

 

  (7) 

 
Proof: We have, 
 

  (8) 

 
Consider,  

    

 

 

 

 
 

 
  (9) 

 

 
 

  (10) 

 
From (8) and (10) we have proved that: 
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Remark: If A(L) = {x : f(x) < L} then   

3. Determination of PMVRA’s 
In the following we obtain L*’s for the three norms dS, d1, d2 and use them to develop the corresponding PMVRA’s. That is, we 
describe the methods of obtaining the modified functions (constants) and the domains for modifications under (a) Sup-norm (b) 
L1-norm and (c) L2-norm. 
 
3.1. Sup-norm (dS): 
From (2) and (4) we have 

.  

 and  

  
 
Hence,  

   

  

  
  (= a minimum value attained by δS(L) for f(a) ≤ L ≤ f(b)). 

, where 

  (11) 
 

 
 

Fig 3: Optimal L corresponding to Sup-norm 
 
3.2. L1-norm (d1) 
 In this case, from (2) and (5) we have 

 

 and  

 Hence,  

Since, the sets A(L) and B(L) are decreasing and increasing (in L), respectively, the integral   is decreasing 

while the integral   is increasing and their respective derivatives w. r. t.  L are −Λ{A(L)} and Λ{B(L)}, 

where Λ(.) is the Lebesgue measure ( from Lemma-1). 
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Hence, the differentiation of δ1(L) w. r. t. L is given by 
 

 and  gives L ( = L*, say) such that . 

Λ{A(L)} = Λ{B(L)}  (12) 
 
Also it can be observed that, Λ{A(L)} is decreasing and Λ{B(L)} is increasing in L, δ1(L) is minimum at L*, where L* is such that 
Λ{A(L* )} = Λ{B(L* )}. The value of L* corresponding to L1-norm is shown below in Figure-4. 
 

 
 

Fig 4: Optimal L corresponding to L1-norm 
 
3.3. L2-norm (d2) 
In this case, from (2) and (5) we have 

 
  and    

 
Differentiating δ2(L) w. r. t. L we have 

 
 
From Lemma-2, 

   and 

  

 

 gives L ( = L*, say) such that . 

  (13) 

 
Also it can be observed that, 

  (= Area{A(L), f}, say) is decreasing and   (= Area{B(L), f}, say) is increasing in L, 

δ2(L) ) is minimum at L* , L* is such that,  
 

Area{A(L* ), f} = Area{B(L* ), f} (14) 
 
The value of L* corresponding to L2-norm is shown below in Figure-5. 
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Fig 5: Optimal L corresponding to L2-norm 
 

4. Comments and Remarks  
i). Performance of PMVRA 
 Note that, removal of violation only on [u, v] may result in 
violation at u and v. But, in the proposed algorithm, we 
remove violation over [u, v] along with rectification of 
function over a super set of [u, v]. As such, in PMVRA an 
iteration removes at least one turning point, and hence the 
number of iterations to attain the non-increasing property will 
be lesser than the number of turning points.  
 
ii). Termination of PMVRA 
To ensure the termination of PMVRA, we assume that f(.) has 
k, a finite number of turning points. The PMVRA identifies 
the interval of maximum violation (if any) and on a certain 
super set of this interval the function is modified by a suitable 
constant that depends on the choice of the norm. In the 
subsequent stage, modification if required will be on a domain 
excluding the interval of maximum violation. As such, after 
each modification the domain of the function that needs to be 
considered reduces very significantly. It is to be noted that 
there are at most (k - 1) violating intervals for f1(.). Hence, the 
algorithm requires at most k iterations. 
 
5. Conclusion 
In this research paper have described an algorithm for 
obtaining closest non-increasing function to a given one. We 
have obtained closest constant value on superset D of 
maximum violation region when measure of closeness is Sup-
norm, L1-norm and L2-norm. 
Equation (11) gives the explicit value of L* in case of Sup-
norm. 
We have made an application of Lemma–1 and Lemma–2 
while determining closest L* to a given function on superset D 
of maximal violation region under the closeness measures L1-
norm and L2-norm, respectively. 
Equation (12) gives the value of L* in case of L1-norm. δ1(L) 
is the absolute deviation of f(X) from L therefore,  if we 
assume X has uniform distribution on D then, L* which 
minimizes δ1(L) is a median of f(X) on D. 

Equation (13) and (14) gives the value of L* in case of L2-
norm. δ2(L) is the mean square deviation of f(X) from L 
therefore, if we assume X has uniform distribution on D then, 
L* which minimizes δ2(L) is an arithmetic mean of f(X) on D. 
When we came across the problem of density estimation and 
density function is known to be non-increasing as we move 
away from its modal point. In such situation, application of 
PMVRA can be made on densiy estimator to obtain closest 
non-decreasing or non-increasing function to a given density 
estimator. Closeness can be measured on the basis of given 
norm such as Sup-norm, L1-norm and L2-norm. 
One can provide an algorithm for obtaining closest non-
increasing function to a given one when closeness measure is 
different from the above discussed norms.  Also, for 
computation purpose, one can develope computer softwares to 
impliment PMVRA for different closeness measures. 
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