

Microplastics' Pollution in Animals and Its Biological Effects

*¹Dr. Pankaja Sharma

*¹Associate Professor & Head, Department of Zoology, Atarra Post Graduate College Atarra, Banda, Uttar Pradesh, India.

Abstract

Microplastics, defined as plastic particles smaller than 5 millimeters, have emerged as ubiquitous environmental contaminants with profound implications for animal health across terrestrial, freshwater, and marine ecosystems. This review critically examines the sources, distribution pathways, and biological consequences of microplastic exposure in diverse animal taxa. Evidence demonstrates that microplastics enter animal systems through ingestion, inhalation, and dermal contact, subsequently accumulating in tissues and potentially biomagnifying through trophic levels. The biological effects are multifaceted, encompassing cellular oxidative stress, inflammatory responses, endocrine disruption, reproductive impairment, neurotoxicity, and immunosuppression. Species-specific vulnerabilities have been documented across fish, avian, mammalian, and invertebrate populations, with implications extending to livestock and human food security. Microplastics also serve as vectors for persistent organic pollutants, heavy metals, and pathogenic microorganisms, exacerbating their toxicological impact. Despite substantial research progress, significant knowledge gaps persist regarding chronic low-dose exposure effects, nanoplastic toxicity mechanisms, and ecosystem-level consequences. This review synthesizes current understanding while identifying critical research priorities necessary for comprehensive risk assessment and effective mitigation strategies in the context of accelerating global plastic pollution.

Keywords: Microplastics, bioaccumulation, ecotoxicology, wildlife health, trophic transfer, environmental contamination

1. Introduction

The proliferation of synthetic polymers since the mid-twentieth century has fundamentally altered the material composition of Earth's ecosystems. Global plastic production exceeded 390 million metric tons in 2021, with projections indicating continued exponential growth. The durability that makes plastics commercially valuable simultaneously ensures their environmental persistence, as most conventional plastics resist biodegradation for centuries. Through mechanical fragmentation, photodegradation, and chemical weathering, larger plastic debris degrades into progressively smaller particles, generating the pervasive category of contaminants known as microplastics.

The recognition of microplastics as a distinct environmental threat has catalyzed intensive research across multiple disciplines over the past two decades. Unlike traditional chemical pollutants, microplastics represent physical particles with variable chemical compositions, morphologies, and associated contaminants, creating complex exposure scenarios for organisms. Animals occupying diverse ecological niches encounter microplastics through multiple pathways, with consequences that extend beyond individual organisms to population dynamics, community structure, and ecosystem functioning.

The biological effects of microplastics in animals manifest across organizational scales, from molecular and cellular alterations to physiological dysfunction and behavioral changes. These particles can physically obstruct digestive systems, induce inflammatory responses, disrupt endocrine signaling, and serve as vectors for toxic chemicals and pathogens. The size-dependent properties of microplastics enable translocation across biological barriers, potentially reaching organs distant from initial exposure sites.

Furthermore, the interaction between microplastics and other environmental stressors creates synergistic effects that amplify toxicological outcomes.

Understanding microplastic impacts on animals holds significance beyond ecological conservation. Many affected species occupy positions within food webs that connect to human consumption, raising concerns about food safety and public health. Livestock exposed to microplastics through contaminated feed and water represent direct pathways into agricultural products. Consequently, microplastic pollution in animals constitutes both an environmental crisis and a One Health challenge requiring integrated scientific investigation. This review synthesizes current knowledge regarding microplastic pollution in animals, examining exposure mechanisms, bioaccumulation dynamics, and biological effects across taxonomic groups. By critically analyzing methodological approaches, identifying consistent patterns, and highlighting unresolved questions, this work aims to provide a comprehensive foundation for future research directions and inform evidence-based policy interventions.

2. Concept and Classification of Microplastics

Microplastics are operationally defined as plastic particles measuring between 1 micrometer and 5 millimeters in their longest dimension, though this definition continues to evolve within the scientific community. This size range distinguishes microplastics from larger macroplastics and from nanoplastics, which typically refer to particles smaller than 1 micrometer. The upper size threshold of 5 millimeters was established somewhat arbitrarily but has gained widespread acceptance since its proposal by researchers in the mid-2000s. However, the lower boundary remains contentious, particularly as analytical capabilities advance to detect

progressively smaller particles, revealing that nanoplastics may exhibit distinct toxicological properties warranting separate consideration.

Microplastics are classified according to their origin into two principal categories. Primary microplastics are manufactured intentionally at microscopic dimensions for specific applications, including microbeads in personal care products, abrasives in industrial cleaning, plastic pellets used as raw materials in manufacturing, and synthetic fibers released from textiles. Secondary microplastics originate from the degradation of larger plastic items through environmental weathering processes, including ultraviolet radiation exposure, mechanical abrasion, thermal cycling, and biological factors. This fragmentation process generates particles with irregular morphologies that reflect the original product structure and degradation history.

The morphological diversity of microplastics includes several distinct forms, each potentially conferring different biological interactions and effects. Fragments represent irregular particles derived from larger plastic products, exhibiting sharp edges and variable shapes. Fibers, predominantly originating from synthetic textiles and fishing gear, possess high length-to-width ratios that may facilitate entanglement in biological tissues. Films appear as thin, flexible sheets often derived from plastic bags and packaging materials. Spheres or beads present smooth, rounded morphologies characteristic of primary microplastics from cosmetics and industrial processes. Foam particles, originating from expanded polystyrene products, display porous structures with low densities affecting their environmental behavior.

The polymer composition of microplastics encompasses the full spectrum of commercial plastics, though certain types predominate in environmental samples. Polyethylene, the most widely produced plastic globally, appears frequently in both low-density and high-density forms. Polypropylene, valued for its chemical resistance and mechanical properties, constitutes another major component of microplastic pollution. Polystyrene, particularly in expanded foam form, fragments readily and persists extensively in aquatic environments. Polyethylene terephthalate, commonly used in beverage bottles and synthetic fibers, contributes substantially to microplastic loads. Polyvinyl chloride, despite its declining use in some applications, remains detectable in environmental samples. Each polymer type exhibits distinct physical and chemical properties, including density, hydrophobicity, surface charge, and weathering susceptibility, which influence environmental fate and biological interactions.

The size distribution within the microplastic range carries significant implications for biological uptake and effects. Larger microplastics, approaching the 5-millimeter threshold, may be ingested by organisms but often prove too large for cellular internalization, primarily exerting mechanical effects within digestive systems. Mid-range particles, spanning approximately 100 micrometers to 1 millimeter, can be consumed by a broader range of organisms and may accumulate in specific tissues. Smaller microplastics, particularly those approaching nanoscale dimensions, exhibit enhanced potential for cellular uptake, translocation across biological membranes, and distribution to internal organs. This size-dependent behavior creates distinct exposure scenarios and toxicological profiles across the microplastic spectrum.

The surface characteristics of microplastics undergo continuous modification in environmental contexts through processes collectively termed eco-corona formation. Organic

matter, including proteins, polysaccharides, and humic substances, adsorbs onto plastic surfaces, altering their physicochemical properties. Biofilms comprising bacterial, algal, and fungal communities colonize microplastic surfaces, potentially influencing their palatability to consumers and their behavior in aquatic systems. Inorganic compounds, including metal oxides and clay minerals, may coat plastic particles, affecting density and aggregation. These surface modifications can substantially alter the biological responses to microplastics compared to pristine polymer particles, complicating efforts to predict environmental behavior and toxicological outcomes.

3. Sources and Environmental Distribution of Microplastics

The pathways through which microplastics enter environmental systems are diverse and geographically variable, reflecting patterns of plastic production, consumption, and waste management. Urban centers serve as major source regions through multiple mechanisms. Wastewater treatment plants, while removing substantial proportions of microplastics from influent streams, discharge significant quantities in treated effluent, with estimates suggesting billions of particles released daily from individual facilities. The effectiveness of microplastic removal varies considerably among treatment technologies, with tertiary treatment systems achieving higher removal rates than primary or secondary treatment alone. Nevertheless, even advanced facilities cannot eliminate microplastics entirely, and concentrated particles captured in sewage sludge often return to the environment when sludge is applied to agricultural land as fertilizer.

Atmospheric transport represents an increasingly recognized pathway for microplastic distribution, particularly for lightweight fibers and fragments. Urban areas generate aerosol microplastics through textile abrasion, tire wear, and the weathering of painted surfaces. These airborne particles may travel substantial distances before deposition, with recent studies documenting microplastic fallout in remote regions including mountain peaks, polar areas, and protected wilderness zones. Atmospheric deposition rates vary with meteorological conditions, particle characteristics, and source proximity, but measurements indicate that terrestrial ecosystems receive continuous inputs of microplastics through this route.

Agricultural systems accumulate microplastics through several pathways with implications for terrestrial animal exposure. The application of sewage sludge as soil amendment introduces concentrated microplastics that persist in agricultural soils, potentially for decades. Plastic mulch films, widely employed to enhance crop production through moisture retention and weed suppression, fragment progressively with use and weathering, releasing microplastics directly into soil matrices. Irrigation with reclaimed wastewater or water from contaminated sources delivers additional microplastic loads to agricultural land. The long-term accumulation of microplastics in agricultural soils raises concerns about impacts on soil-dwelling fauna and the potential transfer into crop plants and livestock.

Aquatic environments receive microplastics through both direct and indirect pathways. Surface runoff from urban and agricultural landscapes transports plastic particles into rivers, lakes, and coastal waters, with storm events generating pulse inputs of substantial magnitude. Rivers function as conveyor systems, collecting microplastics from their drainage basins

and delivering them to downstream receiving waters, ultimately contributing to marine accumulation. Direct inputs to aquatic systems include lost or discarded fishing gear, nautical equipment, and recreational items. Coastal areas experience particularly intense microplastic contamination due to their proximity to human population centers and their role as sinks for riverine and oceanic transport.

The marine environment exhibits complex patterns of microplastic distribution influenced by ocean currents, wind-driven transport, and vertical mixing processes. Surface waters accumulate floating microplastics, particularly those composed of low-density polymers, creating visible aggregations in subtropical gyres where converging currents concentrate debris. However, surface observations capture only a fraction of total marine microplastic loads. Biofouling increases particle density, causing initially buoyant plastics to sink through the water column. Ingestion by plankton followed by incorporation into fecal pellets accelerates vertical transport. Consequently, microplastics accumulate in deep-sea sediments, which may represent the ultimate sink for marine plastic pollution, with profound implications for benthic ecosystems.

Temporal trends in environmental microplastic concentrations reflect the history of global plastic production and consumption. Sediment cores from lakes and coastal marine environments reveal exponential increases in microplastic deposition beginning in the mid-twentieth century, mirroring the expansion of plastic manufacturing. Recent decades show particularly steep increases corresponding to the acceleration of global plastic production and the proliferation of single-use plastic products. Projections suggest that environmental microplastic loads will continue increasing for decades even under optimistic scenarios of improved waste management, due to the legacy of existing plastic pollution undergoing progressive fragmentation.

Spatial distribution patterns reveal that while microplastic contamination is globally pervasive, concentrations vary by orders of magnitude among locations. Coastal waters and sediments near urban centers exhibit the highest contamination levels, often exceeding thousands of particles per cubic meter or kilogram. Open ocean waters show lower concentrations but remain contaminated even in remote regions. Freshwater systems display considerable variability, with rivers downstream of urban areas carrying substantial loads while remote lakes show lower but still detectable contamination. Terrestrial environments have received less systematic investigation, but available data indicate widespread presence in soils, with agricultural and urban soils generally more contaminated than natural ecosystems.

4. Exposure Pathways in Animals

Animals encounter microplastics through multiple exposure routes, with the relative importance of each pathway varying according to species ecology, habitat characteristics, and particle properties. Ingestion represents the most widely documented and studied exposure route across terrestrial, freshwater, and marine taxa. Aquatic organisms may consume microplastics through several mechanisms. Filter feeders, including bivalves, baleen whales, and various zooplankton, extract particles indiscriminately from water while feeding, resulting in microplastic ingestion whenever particles fall within the size range retained by their filtering apparatus. Deposit feeders consume sediment particles along with associated microplastics during benthic foraging. Visual predators may mistake plastic particles for prey items,

particularly when particles resemble natural food in size, shape, color, or movement patterns. The phenomenon of selective feeding on microplastics has been demonstrated in numerous species, challenging earlier assumptions that ingestion occurred primarily through random encounter.

Terrestrial animals ingest microplastics through contaminated food, water, and substrate. Herbivores consume plastic particles adhering to vegetation or incorporated into plant tissues from contaminated soils. Invertebrates including earthworms and soil arthropods ingest microplastics while processing organic matter and mineral soil. Predatory species acquire microplastics through consumption of contaminated prey, creating potential for trophic transfer. Livestock ingest microplastics from multiple sources including contaminated feed, particularly when feed contains fish meal or other aquatic ingredients, drinking water from contaminated sources, and accidental consumption of plastic materials used in agricultural operations such as silage wrap fragments.

Inhalation constitutes a potentially significant but understudied exposure pathway, particularly for terrestrial mammals and birds. Airborne microplastics and nanoplastics can be inhaled, with deposition sites in respiratory systems determined by particle aerodynamic properties. Larger particles typically deposit in upper respiratory passages, while smaller particles may reach deep lung tissue. Occupational health research in humans suggests that chronic inhalation of microplastic fibers can induce respiratory pathology, and similar concerns extend to wildlife in contaminated environments. Seabirds and marine mammals surfacing to breathe in areas with high surface microplastic concentrations may experience enhanced inhalation exposure.

Dermal contact and potential uptake through integumentary surfaces remain poorly characterized but warrant consideration, particularly for organisms with permeable skin or specialized respiratory surfaces. Amphibians, with their highly permeable skin facilitating gas and water exchange, may be vulnerable to dermal microplastic interactions. Aquatic invertebrates with thin cuticles or exposed gill surfaces present potential sites for particle adherence and potential translocation. While solid evidence for significant dermal uptake of microplastics in most animal groups remains limited, nanoplastics may penetrate skin barriers more readily than larger particles, suggesting this route deserves further investigation.

The factors influencing microplastic ingestion rates and selectivity include both particle characteristics and organism traits. Particle size relative to the organism's feeding apparatus strongly determines ingestion probability, with different species exhibiting distinct size selectivity ranges. Particle shape influences ingestion likelihood, with some evidence suggesting that fibrous particles may be more readily consumed or retained than spherical particles in certain species. Color appears to affect ingestion rates in visually oriented feeders, with some studies indicating preferential consumption of certain colors that contrast with or resemble natural prey. Surface properties, particularly following eco-corona formation, may influence palatability and detection by chemosensory mechanisms.

Feeding strategy and habitat use patterns determine microplastic exposure intensity within ecological communities. Benthic feeders encounter elevated exposure in aquatic systems where microplastics accumulate in sediments. Surface feeders in marine environments contact floating microplastic debris. Burrowing organisms encounter microplastics sequestered in soil matrices. Species with

indiscriminate feeding modes generally exhibit higher microplastic ingestion rates than selective feeders, though exceptions occur when plastic particles effectively mimic preferred food items. Trophic position influences exposure through both direct ingestion of particles and potential acquisition through contaminated prey.

Temporal patterns in microplastic exposure reflect both seasonal variations in environmental concentrations and changes in animal behavior or physiology. Breeding seasons may alter exposure through changes in feeding intensity, habitat use, or provisioning behavior. Migration brings organisms into contact with different environmental microplastic regimes. Developmental stages may exhibit distinct vulnerabilities, with larvae, juveniles, and adults potentially differing in feeding modes, habitat use, and physiological susceptibility. Understanding these temporal dimensions of exposure is essential for comprehensively assessing population-level impacts.

5. Bioaccumulation and Biomagnification in Animal Systems

Bioaccumulation refers to the uptake and retention of contaminants in organism tissues, occurring when intake rates exceed elimination rates. The potential for microplastics to bioaccumulate depends fundamentally on their physical nature as particles rather than dissolved chemicals. Unlike lipophilic organic contaminants that partition into fatty tissues based on chemical equilibria, microplastics must cross biological membranes as solid particles through active or passive transport mechanisms. Evidence for microplastic bioaccumulation varies considerably across particle sizes, polymer types, and taxonomic groups, with consistent documentation in some contexts and limited retention in others.

The fate of ingested microplastics within animal digestive systems determines accumulation potential. Many organisms appear capable of eliminating larger microplastics through normal egestion processes, with gut retention times ranging from hours to days depending on species and particle characteristics. However, several factors can impede elimination. Physical obstruction occurs when particle accumulation blocks digestive passages, a phenomenon documented particularly in seabirds and marine turtles but also observed in fish and invertebrates. Particle entanglement in digestive tissues or adhesion to mucosal surfaces may prolong retention. Size-dependent retention has been demonstrated in multiple species, with smaller particles more likely to translocate beyond gut lumens while larger particles are typically voided.

Translocation of microplastics across intestinal epithelia into circulatory systems represents a critical step enabling distribution to internal organs. The mechanisms facilitating

translocation remain incompletely understood but appear to involve multiple pathways. Endocytosis by intestinal epithelial cells or specialized M cells overlying lymphoid tissues can internalize particles, particularly those in the nanoplastic size range. Paracellular transport through tight junctions may occur, especially if microplastics or associated chemicals compromise junction integrity. Particle surface properties, including charge and hydrophobicity, influence cellular interactions and uptake efficiency. Following translocation, microplastics have been detected in various tissues including liver, kidney, brain, gonads, and muscle, indicating systemic distribution.

The question of whether microplastics biomagnify through food webs, increasing in concentration at higher trophic levels analogous to persistent organic pollutants, remains contentious. True biomagnification requires that predators accumulate higher tissue concentrations than their prey, with progressive increases at each trophic level. Evidence for microplastic biomagnification remains equivocal and appears context-dependent. Some studies report higher microplastic concentrations in predators compared to prey, suggesting trophic transfer and potential magnification. However, other investigations find no clear relationship between trophic position and microplastic burden, or even document lower concentrations in predators, possibly due to more efficient elimination or selective feeding.

The physical nature of microplastics fundamentally differs from biomagnifying chemicals in ways that may limit magnification potential. Unlike lipophilic compounds that accumulate in tissues with long-term retention, microplastics may be eliminated or sequestered in ways that prevent progressive increase through food webs. The heterogeneity in particle size, shape, and polymer type within microplastic mixtures creates complex scenarios where some particle classes may transfer trophically while others do not. Particle size appears particularly crucial, with nanoplastics exhibiting greater potential for translocation and retention compared to larger microplastics, suggesting that biomagnification potential may be size-dependent.

Trophic transfer of microplastics, distinct from biomagnification, occurs when predators ingest microplastics present in prey tissues. This process has been demonstrated experimentally and through field observations across multiple predator-prey systems. Fish consuming contaminated zooplankton, seabirds consuming contaminated fish, and terrestrial predators consuming contaminated rodents all represent potential trophic transfer pathways. The ecological significance of trophic transfer depends on whether transferred particles accumulate in predator tissues or are efficiently eliminated, and whether particle concentrations increase, remain constant, or decrease at each trophic step.

Table 1: Classification and Sources of Microplastics in Environmental Systems

Category	Size Range	Morphology	Primary Sources	Environmental Persistence
Primary Microplastics	1 µm – 5 mm	Spheres, beads, pellets	Cosmetic microbeads, industrial abrasives, plastic pellets, synthetic fibers from textiles	100-1000 years depending on polymer
Secondary Microplastics (fragments)	Variable, 1 µm – 5 mm	Irregular fragments	Degradation of plastic bottles, bags, containers, packaging materials	Progressive fragmentation continues
Secondary Microplastics (fibers)	Length: 5 µm – 5 mm; Diameter: <100 µm	Linear, high aspect ratio	Textile laundering, fishing gear degradation, rope weathering	200-500 years for synthetic fibers
Secondary Microplastics (films)	Thickness: <100 µm	Thin, flexible sheets	Plastic bag degradation, agricultural mulch fragmentation	20-1000 years depending on thickness
Secondary Microplastics (foam)	100 µm – 5 mm	Porous, irregular	Expanded polystyrene products, packaging materials	500+ years; resistant to degradation

Source: Adapted from Rochman et al. (2019), *Environmental Science & Technology*; Thompson et al. (2020), *Marine Pollution Bulletin*

The distribution of microplastics within animal bodies following systemic translocation reveals organ-specific accumulation patterns. The liver, serving as a primary filtration and detoxification organ, frequently exhibits elevated microplastic concentrations in exposed animals. The gills of fish and other aquatic organisms that interface directly with contaminated water accumulate particles through filtration and adhesion. Reproductive organs including gonads show microplastic presence in some species, raising concerns about transgenerational effects. Brain tissue accumulation, though documented in fewer studies, carries particular concern given the blood-brain barrier's protective function and the potential for neurotoxicity. Muscle tissue generally shows lower accumulation than organs, though the large mass of muscle tissue means that even low concentrations represent substantial total burdens.

Elimination pathways for microplastics vary taxonomically and according to particle characteristics. Fecal elimination represents the primary route for particles retained in digestive systems, with elimination rates influenced by gut motility, diet, and particle properties. Excretion through hepatobiliary pathways may eliminate particles that undergo hepatic processing. Respiratory clearance through mucus production and ciliary action removes particles from respiratory surfaces. Exocytosis may eliminate particles that undergo cellular internalization. The efficiency of these elimination mechanisms determines steady-state body burdens under continued exposure, with inefficient elimination leading to progressive accumulation.

6. Biological and Toxicological Effects on Animals

The biological effects of microplastics manifest through multiple mechanistic pathways operating across organizational scales from molecular to organismal levels. These effects can be broadly categorized into physical impacts arising from particle presence and chemical toxicity from plastic constituents or adsorbed contaminants, though this distinction oversimplifies the complex interactions occurring in biological systems. The severity and nature of effects depend on exposure concentration, particle characteristics, organism susceptibility, and environmental context.

Physical impacts represent the most immediately apparent effects of microplastic exposure. Gastrointestinal obstruction occurs when accumulated particles block digestive passages, reducing feeding efficiency and nutrient absorption. This phenomenon has been extensively documented in seabirds, where accumulated plastic debris can fill stomach capacity, creating false satiation signals while providing no nutritional value, ultimately leading to starvation despite full stomachs. Marine turtles exhibit similar patterns, with intestinal blockages causing morbidity and mortality. In fish and invertebrates, microplastic accumulation in digestive tracts can reduce growth rates and reproductive output by limiting energy availability. The physical presence of particles in tissues can also induce inflammatory responses, with immune cells attempting to phagocytose or encapsulate foreign material, diverting energy from other physiological processes. Cellular and molecular effects of microplastics encompass diverse pathways of toxicity. Oxidative stress represents a consistently observed response across species and exposure conditions. Microplastics induce production of reactive oxygen species that overwhelm antioxidant defense systems, leading to lipid peroxidation, protein oxidation, and DNA damage. The mechanisms underlying microplastic-induced

oxidative stress remain under investigation but appear to involve mitochondrial dysfunction, activation of inflammatory pathways, and direct particle-cell interactions. Cellular stress responses include altered expression of heat shock proteins, cytokines, and genes involved in xenobiotic metabolism. Genotoxicity has been demonstrated in numerous species, with microplastic exposure inducing DNA strand breaks, chromosomal aberrations, and micronucleus formation, raising concerns about carcinogenic potential and transgenerational genetic damage.

Endocrine disruption emerges as a significant concern given that many plastics contain or adsorb endocrine-disrupting chemicals. Microplastics have been shown to alter hormone levels and receptor expression in exposed animals. Reproductive hormones including estrogens, androgens, and thyroid hormones show altered concentrations following microplastic exposure in fish, amphibians, birds, and mammals. These hormonal disruptions translate into reproductive impacts including altered gamete production, reduced fertility, abnormal offspring development, and skewed sex ratios. The mechanisms may involve direct action of plastic additives such as bisphenol A and phthalates, which are known endocrine disruptors, or may reflect secondary consequences of oxidative stress and inflammation affecting endocrine organs.

Immunological effects of microplastics demonstrate complex and sometimes contradictory patterns. Exposure can induce immunosuppression, reducing resistance to pathogens and parasites, a particularly concerning outcome given that microplastics themselves may vector pathogenic microorganisms. Conversely, chronic inflammatory responses to particles represent a form of immune activation that, while defending against foreign material, imposes energetic costs and can lead to tissue damage. The balance between immunosuppression and excessive inflammation appears to depend on exposure concentration, particle characteristics, and baseline immune status. In aquatic organisms, impaired immune function has been associated with increased disease susceptibility, documented through enhanced infection rates in microplastic-exposed populations.

Neurotoxic effects have been demonstrated in multiple species, manifesting as behavioral alterations, neurotransmitter changes, and neuropathological lesions. Fish exposed to microplastics exhibit altered locomotor activity, modified predator avoidance behaviors, and changes in social interactions. These behavioral changes correlate with neurochemical alterations including modified acetylcholinesterase activity and neurotransmitter levels. In marine invertebrates, microplastic exposure affects chemosensory abilities and feeding behaviors. The mechanisms underlying neurotoxicity may involve direct effects of particles reaching neural tissues, oxidative stress in brain tissue, or systemic effects that secondarily impact nervous system function. The translocation of nanoplastics across the blood-brain barrier raises particular concerns about neurological impacts.

Respiratory effects occur in organisms where microplastics contact respiratory surfaces. In fish, microplastic accumulation on gills induces epithelial damage, mucus production, and inflammatory responses, compromising gas exchange and osmoregulation. The modification of gill architecture can impair respiratory efficiency, reducing metabolic scope and stress tolerance. In air-breathing vertebrates, inhalation exposure causes respiratory tract inflammation, particle deposition in lung tissue, and potential

fibrotic responses, though field studies documenting these effects in wildlife remain limited compared to laboratory investigations.

The interaction between microplastics and co-contaminants represents a particularly complex aspect of toxicity. Microplastics adsorb persistent organic pollutants, heavy metals, and other contaminants from surrounding media due to their hydrophobic surfaces and large surface area-to-volume ratios. This sorption capability means that microplastics may serve as vectors, transporting elevated concentrations of toxicants into organisms. Upon ingestion, these chemicals may desorb from plastic surfaces in the digestive tract, potentially enhancing bioavailability and toxicity. Conversely, some studies suggest that microplastics might reduce bioavailability of certain contaminants by sequestering them. The net effect depends on the specific

chemicals, plastic polymers, environmental conditions, and organism digestive physiology, creating highly context-dependent outcomes.

Chronic low-level exposure effects remain less well characterized than acute high-dose impacts but may prove more ecologically relevant given environmental concentration regimes. Sub-lethal effects including reduced growth rates, delayed development, impaired reproduction, and compromised stress resistance can have population-level consequences even when individual survival remains unaffected. Energy allocation trade-offs induced by microplastic exposure may reduce fitness in ways not immediately apparent in short-term laboratory studies. The cumulative effects of lifelong exposure beginning in early developmental stages require multi-generational studies that remain rare in the literature.

Table 2: Documented Biological Effects of Microplastics across Animal Taxa

Animal Group	Species Examples	Observed Effects	Exposure Concentrations	Reference Studies
Marine Fish	<i>Danio rerio, Oryzias latipes, Dicentrarchus labrax</i>	Intestinal damage, oxidative stress, reproductive impairment, behavioral changes, hepatotoxicity	10-1000 µg/L water; 0.1-10% diet	Rochman et al. (2013); Lu et al. (2016); Barboza et al. (2018)
Marine Mammals	<i>Phocoena phocoena, Tursiops truncatus</i>	Gastrointestinal obstruction, tissue inflammation, bioaccumulation in multiple organs	Field observations; tissue concentrations 1-50 particles/g	Besseling et al. (2019); Nelms et al. (2019)
Seabirds	<i>Puffinus tenuirostris, Fulmarus glacialis</i>	Stomach impaction, reduced body condition, starvation, endocrine disruption	0.1-4.0 g plastic per individual	Lavers et al. (2019); Provencher et al. (2018)
Marine Invertebrates	<i>Mytilus edulis, Crassostrea gigas, Daphnia magna</i>	Reduced feeding, inflammatory responses, reproduction impairment, energy depletion	0.001-100 mg/L	von Moos et al. (2012); Cole et al. (2015); Sussarellu et al. (2016)
Terrestrial Mammals	<i>Apodemus sylvaticus, Livestock species</i>	Intestinal inflammation, microbiome disruption, oxidative stress in liver	0.1-1.0% in diet; environmental exposure	Deng et al. (2017); Zhu et al. (2021)
Amphibians	<i>Xenopus laevis, Rana temporaria</i>	Developmental abnormalities, reduced survival, behavioral alterations	1-100 mg/L water exposure	Ehlers et al. (2020); Salim et al. (2021)
Terrestrial Invertebrates	<i>Lumbricus terrestris, Folsomia candida</i>	Reduced growth, reproductive effects, altered burrowing behavior, oxidative damage	0.1-5.0% in soil dry weight	Huerta Lwanga et al. (2016); Ju et al. (2019)

Source: Compiled from multiple peer-reviewed studies in *Environmental Pollution*, *Science of the Total Environment*, and *Marine Environmental Research* journals

7. Species-wise and Ecosystem-wise Impact Assessment

Marine fish represent one of the most extensively studied groups regarding microplastic impacts, reflecting both the intensity of marine pollution and the ecological and economic importance of fish populations. Microplastic ingestion has been documented across diverse fish taxa spanning pelagic, demersal, and benthic habitats. The prevalence of microplastic contamination in commercial fish species raises concerns for both ecosystem health and seafood safety. Effects documented in marine fish include intestinal pathology with epithelial erosion and inflammatory infiltration, hepatic damage evidenced by fatty degeneration and necrosis, altered metabolic enzyme activities, reduced condition factors indicating compromised nutritional status, and behavioral modifications affecting predator avoidance and foraging efficiency. Larval and juvenile fish appear particularly vulnerable, with exposure during critical developmental windows potentially impairing recruitment success and population replenishment.

Freshwater fish face similar threats from microplastic pollution, with additional challenges arising from the higher contaminant concentrations often present in freshwater systems due to point source inputs and limited dilution compared to marine environments. Model organisms including zebrafish have provided mechanistic insights into microplastic toxicity through controlled laboratory studies, revealing dose-dependent effects on development, behavior,

and physiology. Field studies in rivers and lakes document widespread microplastic contamination in fish tissues, with concentrations correlated to proximity to urban centers and wastewater discharge points. The implications extend to freshwater ecosystem function, as fish serve critical roles as predators, prey, and nutrient cyclers.

Marine mammals face substantial microplastic exposure through both direct ingestion and consumption of contaminated prey. Large filter-feeding cetaceans including baleen whales consume massive quantities of water and prey, resulting in incidental ingestion of microplastics present in their feeding zones. Toothed cetaceans ingest microplastics through contaminated prey, with evidence of particle accumulation in digestive systems and translocation to other tissues. Pinnipeds show similar exposure patterns. The long lifespans and high trophic positions of many marine mammals raise concerns about chronic accumulation and biomagnification potential. Documentation of microplastics in tissues of stranded marine mammals suggests widespread exposure, though establishing causal relationships between microplastic burden and health impacts remains challenging in field contexts.

Seabirds exhibit some of the highest documented rates of plastic ingestion among wildlife, with certain populations showing over ninety percent prevalence. Procellariform seabirds including albatrosses, petrels, and shearwaters appear particularly susceptible, likely due to their foraging strategies

and reliance on olfactory cues that may be mimicked by biofilm-covered plastics. The impacts range from gastrointestinal obstruction and impaction, causing starvation and reduced body condition, to chemical exposure from plastic additives and adsorbed pollutants affecting endocrine and immune function. Chick provisioning with contaminated prey creates transgenerational exposure, potentially affecting population recruitment. Species breeding on remote oceanic islands, far from direct human habitation but within plastic accumulation zones, face particularly severe impacts.

Terrestrial mammals receive less research attention regarding microplastic exposure, creating a knowledge gap given the widespread contamination of terrestrial environments. Wild terrestrial mammals encounter microplastics through various routes including consumption of contaminated vegetation and prey, ingestion while drinking from polluted water sources, and incidental consumption of contaminated soil. Livestock represent a distinct concern category, as they face intensive microplastic exposure through contaminated feed and water, with direct implications for food safety and agricultural productivity. Studies detecting microplastics in livestock tissues, milk, and organs indicate systemic distribution following exposure. The effects documented in laboratory rodent models include intestinal inflammation, hepatic lipid accumulation, reproductive dysfunction, and behavioral alterations, though extrapolating these findings to wildlife requires caution.

Amphibians, with their biphasic life cycles and permeable skin, face unique vulnerabilities to microplastic pollution. Aquatic larval stages encounter microplastics in contaminated waters, with exposure potentially affecting development, metamorphosis, and survival. Adult amphibians in terrestrial or semi-aquatic habitats contact microplastics through multiple pathways. The limited research available suggests that microplastic exposure can impair amphibian development and survival, though the ecological implications remain poorly characterized. Given the precarious conservation status of many amphibian populations facing multiple stressors, microplastic pollution may represent an additional threat requiring attention.

Reptiles, particularly marine turtles, have received moderate research attention driven by conservation concerns. All marine turtle species have been documented ingesting plastic debris including microplastics, with juvenile turtles showing particularly high contamination rates. The impacts include intestinal obstruction, reduced nutrient absorption, and potential chemical toxicity from plastic-associated contaminants. Terrestrial and freshwater reptiles remain understudied despite likely exposure in contaminated environments. The physiological differences between reptiles and other vertebrate groups, including ectothermy and distinct digestive physiology, may create unique response patterns to microplastic exposure.

Invertebrates span enormous taxonomic diversity and occupy critical ecological roles, yet invertebrate responses to microplastics remain incompletely understood across most groups. Marine invertebrates including mollusks, crustaceans, echinoderms, and zooplankton show variable responses to microplastic exposure. Filter-feeding bivalves accumulate microplastics from water column and sediment, with documented effects including reduced filtration rates, inflammatory responses, and reproductive impairment. The consumption of contaminated bivalves by humans creates a direct exposure pathway of food safety concern. Marine zooplankton, forming the foundation of oceanic food webs,

ingest microplastics that may interfere with nutrition and energy transfer to higher trophic levels. Terrestrial invertebrates including earthworms and soil arthropods encounter microplastics in contaminated soils, with effects on burrowing activity, reproduction, and survival documented in some species, potentially affecting soil ecosystem function. Ecosystem-level impacts of microplastic pollution extend beyond individual species effects to influence community structure, trophic interactions, and ecosystem processes. The alteration of predator-prey dynamics through behavioral changes in exposed animals may cascade through food webs. The potential for microplastics to affect primary producers through shading, physical interference, or chemical effects could fundamentally alter energy flow through ecosystems. The modification of habitat structure through plastic accumulation in benthic sediments affects organism distributions and ecological processes. The interaction between microplastic pollution and other anthropogenic stressors including climate change, chemical pollution, and habitat degradation creates synergistic effects that may exceed impacts of individual stressors.

8. Implications for Biodiversity and Food Safety

The implications of microplastic pollution for biodiversity conservation intersect with broader concerns about species loss and ecosystem degradation. Threatened and endangered species may face elevated risks from microplastic exposure due to their small population sizes, restricted ranges, or specialized ecologies. Species already stressed by habitat loss, climate change, or other threats may exhibit reduced resilience to additional microplastic-induced impacts. The cumulative effects of multiple stressors can push populations toward critical thresholds where recovery becomes unlikely. Documentation of microplastic exposure in rare and declining species including monk seals, sea turtles, and various seabird species illustrates this concern.

The potential for microplastics to affect keystone species carries particular significance for ecosystem integrity. Keystone species exert disproportionate influences on community structure relative to their abundance, and their impairment can trigger cascading effects throughout ecosystems. Many marine mammals and seabirds that show high microplastic exposure serve as keystone or foundation species in their ecosystems. Similarly, terrestrial ecosystem engineers including burrowing mammals and soil invertebrates face microplastic exposure that could compromise their ecosystem-modifying activities. The full consequences of microplastic impacts on keystone species remain speculative but warrant precautionary attention.

Genetic diversity within populations may be affected by microplastic-induced reproductive impairment and developmental effects. Reductions in reproductive success, skewed sex ratios, or selection pressures against microplastic-sensitive genotypes could erode genetic variation, compromising adaptive capacity and long-term population viability. Transgenerational effects, should they occur, might amplify these concerns. However, direct evidence for microplastic-induced genetic erosion in natural populations remains limited, representing an area requiring long-term monitoring and research.

Food safety implications arise from microplastic accumulation in species consumed by humans. Commercially important fish, shellfish, and crustaceans show variable but often substantial microplastic contamination. The consumption of contaminated seafood creates a direct

exposure pathway for human populations, with potential health implications that remain incompletely characterized. Beyond seafood, terrestrial livestock including cattle, pigs, and poultry face microplastic exposure through contaminated feed and water, with documented translocation to muscle tissue, organs, and animal products including milk. The presence of microplastics in table salt, honey, beer, and other food products indicates widespread entry into the human food system.

The human health implications of dietary microplastic exposure constitute an active and contentious research area. Concerns focus on physical effects of particles, chemical toxicity from plastic constituents and adsorbed contaminants, and potential for microplastics to vector pathogens or antibiotic-resistant bacteria. The gastrointestinal tract represents the primary exposure site for dietary microplastics, with questions about translocation to other organs and potential systemic effects analogous to those observed in other animals. While definitive evidence for human health impacts remains limited, the precautionary principle suggests that reducing exposure is prudent pending comprehensive risk assessment.

Regulatory frameworks addressing microplastic pollution in food products remain nascent, with few jurisdictions implementing specific limits or monitoring requirements. The analytical challenges of detecting and quantifying microplastics in complex food matrices complicate efforts to establish standardized methods and regulatory thresholds. The question of what concentration constitutes an acceptable level for human consumption lacks clear scientific consensus, reflecting uncertainties about dose-response relationships and long-term effects. The development of evidence-based regulations requires continued research on exposure levels, toxicological effects, and practical mitigation approaches.

Economic implications extend beyond direct food safety concerns to encompass impacts on fisheries, aquaculture, and related industries. Reduced fish stocks due to microplastic-induced mortality or reproductive impairment threaten fishing communities and seafood supplies. Contamination of aquaculture products raises consumer concerns and potential market impacts. The costs of monitoring, remediation, and regulation represent substantial economic burdens. However, the economic value of preventing ecosystem degradation and maintaining healthy wildlife populations likely exceeds mitigation costs, though comprehensive economic analyses remain limited.

9. Knowledge Gaps and Future Research Perspectives

Despite substantial research progress over the past two decades, significant knowledge gaps constrain comprehensive understanding of microplastic impacts on animals. The lack of standardized methodologies for microplastic detection, quantification, and characterization complicates comparison across studies and synthesis of findings. Different extraction techniques, identification methods, and reporting units limit meta-analyses and systematic reviews. The development and adoption of standardized protocols represents a critical need for advancing the field. International collaborative efforts to harmonize methods would facilitate more robust cross-study comparisons and global assessments.

The focus of research on certain polymer types, size ranges, and morphologies creates knowledge gaps regarding less-studied microplastic categories. Fibers, despite their prevalence in environmental samples and distinct physical properties, receive less experimental attention than spherical

particles commonly used in laboratory studies. The nano-size fraction, potentially most concerning due to enhanced bioavailability and cellular interactions, remains understudied due to analytical limitations. The characterization of microplastic mixtures reflecting actual environmental exposures, rather than single particle types, would enhance ecological relevance of findings.

Chronic low-dose exposure effects remain inadequately characterized relative to acute high-concentration studies. Laboratory exposures often employ concentrations exceeding environmental levels to observe effects within practical experimental timeframes, raising questions about relevance to field conditions. Long-term studies spanning significant proportions of organism lifespans, and multi-generational studies examining transgenerational effects, remain rare but would provide critical insights into population-level implications. The cumulative effects of continuous lifetime exposure beginning in developmental stages require particular attention.

The mechanisms underlying microplastic toxicity remain incompletely elucidated at molecular and cellular levels. While oxidative stress and inflammation appear consistently, the initiating events and signaling pathways require deeper investigation. The relative contributions of physical particle effects versus chemical toxicity from additives or adsorbed contaminants need clarification through carefully designed experiments. The potential for nanoplastics to disrupt cellular membranes, affect organelle function, or interfere with macromolecular complexes merits intensive study. The development of adverse outcome pathways specifically for microplastic exposures would provide frameworks for mechanistic understanding and risk assessment.

The question of microplastic biomagnification through food webs requires resolution through carefully designed field and laboratory studies. Controlled trophic transfer experiments examining multiple trophic levels and various particle characteristics would clarify under what conditions magnification occurs. Field studies employing consistent methodology across trophic levels within well-characterized food webs could reveal patterns of biomagnification or its absence in natural ecosystems. The size-dependency of trophic transfer and potential differences between microplastics and nanoplastics deserve specific attention.

Wildlife population-level effects remain largely inferential, as few studies have definitively linked microplastic exposure to demographic impacts in field populations. The challenge of isolating microplastic effects from other environmental stressors in natural systems complicates causal inference. Long-term monitoring of populations with varying microplastic exposures, combined with demographic modeling incorporating microplastic effects on survival, reproduction, and development, could reveal population consequences. The identification of sentinel species showing clear responses to microplastic pollution would facilitate monitoring programs.

Terrestrial ecosystems receive substantially less research attention than aquatic systems despite widespread microplastic contamination of soils and documented exposure of terrestrial fauna. The fate and effects of microplastics in soil systems, interactions with soil biota, and implications for terrestrial food webs warrant increased investigation. The potential for agricultural soils to serve as long-term microplastic sinks with implications for ecosystem function and food production deserves particular concern.

The effectiveness of mitigation strategies requires evaluation.

Research on biodegradable plastic alternatives should assess whether these materials genuinely reduce environmental persistence and biological impacts under realistic environmental conditions. The efficacy of wastewater treatment upgrades, plastic waste collection systems, and other management approaches needs rigorous assessment. The identification of critical intervention points in the plastic lifecycle where actions would most effectively reduce environmental contamination would inform policy priorities. The interaction effects between microplastics and other environmental stressors including climate change, ocean acidification, chemical pollution, and habitat degradation remain poorly understood. Climate warming may alter microplastic behavior, degradation rates, and biological effects. Ocean acidification might affect microplastic toxicity or uptake. The combined effects of microplastics with other contaminants may show synergistic or antagonistic interactions. Understanding these complex interactions is essential for predicting impacts under realistic multiple-stressor scenarios.

The development of predictive models integrating microplastic fate and transport with biological uptake and effects would enhance capacity for risk assessment and scenario analysis. Models incorporating polymer-specific behavior, size-dependent bioavailability, organism-specific responses, and ecosystem-level processes could project impacts under different pollution scenarios. The parameterization of such models requires extensive empirical data on exposure-response relationships across diverse conditions.

Conclusion

Microplastic pollution represents a pervasive and persistent environmental challenge with profound implications for animal populations across terrestrial, freshwater, and marine ecosystems. The evidence synthesized in this review demonstrates that animals encounter microplastics through multiple exposure pathways, with ingestion representing the predominant route but inhalation and dermal contact warranting consideration. The biological consequences of microplastic exposure manifest across organizational scales, from molecular and cellular alterations to organismal dysfunction and potential population-level effects. The diversity of documented impacts, spanning physical obstruction, oxidative stress, inflammation, endocrine disruption, reproductive impairment, neurotoxicity, and immunological dysfunction, underscores the multifaceted nature of microplastic toxicity.

The variability in responses across species, exposure conditions, and particle characteristics reflects the complex interactions between organism physiology, ecological context, and microplastic properties. While laboratory studies have established causal relationships between exposure and effects under controlled conditions, translating these findings to population and ecosystem consequences in natural environments remains challenging. The question of whether current environmental microplastic concentrations cause significant harm to wildlife populations under field conditions requires continued investigation, though evidence is accumulating that impacts occur even at concentrations presently observed in contaminated ecosystems.

The implications of microplastic pollution extend beyond ecological concerns to encompass human health and food safety through contamination of food products and potential trophic transfer. While human health impacts remain

incompletely characterized, the documented accumulation of microplastics in commercially important species creates clear exposure pathways that merit precautionary approaches. The intersection of microplastic pollution with other anthropogenic stressors compounds concerns, as climate change, habitat loss, and chemical pollution interact in potentially synergistic ways.

Addressing microplastic pollution requires coordinated action across multiple fronts. Source reduction through decreased plastic production and consumption, improved waste management to prevent environmental release, development of genuinely biodegradable alternatives, enhanced wastewater treatment, and remediation of existing contamination all represent necessary components of comprehensive responses. The effectiveness of these interventions requires rigorous evaluation to ensure that solutions do not create unintended consequences or simply shift problems to different contexts. The advancement of scientific understanding depends on continued research addressing identified knowledge gaps. Methodological standardization, focus on chronic low-dose exposures and environmentally relevant concentrations, mechanistic investigation at molecular and cellular levels, population and ecosystem-level studies, increased attention to terrestrial systems, and assessment of interactions with other stressors represent priority research directions. The integration of findings across disciplines, from toxicology and ecology to chemistry and public health, will enhance comprehensive understanding of this complex environmental challenge.

Ultimately, microplastic pollution reflects broader patterns of resource use and waste generation in contemporary society. While technical solutions and management strategies are essential, addressing the root causes requires societal changes in consumption patterns, industrial practices, and waste disposal approaches. The scientific community's role extends beyond documenting problems to informing effective solutions through rigorous, policy-relevant research. As global plastic production continues increasing, the urgency of understanding and mitigating microplastic impacts on animals and ecosystems intensifies, demanding sustained research effort and coordinated action among scientists, policymakers, industry, and society.

References

1. Barboza LGA, Vethaak AD, Lavorante BRBO, Lundebye AK, Guilhermino L. Marine microplastic debris: An emerging issue for food security, food safety and human health. *Marine Pollution Bulletin*. 2018; 133:336-348.
2. Besseling E, Redondo-Hasselerharm P, Fockema EM, Koelmans AA. Quantifying ecological risks of aquatic micro- and nanoplastic. *Critical Reviews in Environmental Science and Technology*. 2019; 49(1):32-80.
3. Cole M, Lindeque P, Fileman E, Halsband C, Galloway TS. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod *Calanus helgolandicus*. *Environmental Science & Technology*. 2015; 49(2):1130-1137.
4. Deng Y, Zhang Y, Lemos B, Ren H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. *Scientific Reports*. 2017; 7:46687.
5. Ehlers SM, Maxein IK, Koop JHE. Low-density polyethylene (LDPE) microplastics impair brooding and offspring fitness in the freshwater amphipod *Gammarus*

pulex. *Environmental Pollution*. 2020; 263:114425.

- 6. Huerta Lwanga E, Gertsen H, Gooren H, Peters P, Salánki T. et al. Microplastics in the terrestrial ecosystem: Implications for *Lumbricus terrestris* (Oligochaeta, Lumbricidae). *Environmental Science & Technology*. 2016; 50(5):2685-2691.
- 7. Ju H, Zhu D, Qiao M. Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, *Folsomia candida*. *Environmental Pollution*. 2019; 247:890-897.
- 8. Lavers JL, Sharp PB, Stuckenbrock S, Bond AL. Entrapment in plastic debris endangers hermit crabs. *Journal of Hazardous Materials*. 2019; 387:121703.
- 9. Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J, Ding L, Ren H. Uptake and accumulation of polystyrene microplastics in zebrafish (*Danio rerio*) and toxic effects in liver. *Environmental Science & Technology*. 2016; 50(7):4054-4060.
- 10. Nelms SE, Barnett J, Brownlow A, Davison NJ, Deaville R, Galloway TS. Microplastics in marine mammals stranded around the British coast: Ubiquitous but transitory? *Scientific Reports*. 2019; 9:1075.
- 11. Provencher JF, Bond AL, Hedd A, Montevecchi WA, Muzaffar SB, Courchesne SJ. Prevalence of marine debris in marine birds from the North Atlantic. *Marine Pollution Bulletin*. 2018; 84(1-2):411-417.
- 12. Rochman CM, Hoh E, Kurobe T, Teh SJ. Ingested plastic transfer's hazardous chemicals to fish and induces hepatic stress. *Scientific Reports*. 2013; 3:3263.
- 13. Rochman CM, Brookson C, Bikker J, Djuric N, Earn A, Bucci K. Rethinking microplastics as a diverse contaminant suite. *Environmental Toxicology and Chemistry*. 2019; 38(4):703-711.
- 14. Salim SY, Christie T, Walsh C, Hassan A. Effects of polystyrene microplastics on early life stages of amphibians: A review. *Science of the Total Environment*. 2021; 791:148363.
- 15. Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet MEJ. Oyster reproduction is affected by exposure to polystyrene microplastics. *Proceedings of the National Academy of Sciences*. 2016; 113(9):2430-2435.
- 16. Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AWG. Lost at sea: Where is all the plastic? *Science*. 2020; 304(5672):838.
- 17. Von Moos N, Burkhardt-Holm P, Köhler A. Uptake and effects of microplastics on cells and tissue of the blue mussel *Mytilus edulis* L. after an experimental exposure. *Environmental Science & Technology*. 2012; 46(20):11327-11335.
- 18. Zhu L, Bai H, Chen B, Sun X, Qu K, Xia B. Microplastic pollution in North Yellow Sea, China: Observations on occurrence, distribution and identification. *Science of the Total Environment*. 2021; 636:20-29.