

< 38 > *Corresponding Author: Durga Praveen Deevi

Leveraging Neural Code Embeddings and Hybrid Static-Dynamic
Analysis for Enhanced Vulnerability Detection

*1Durga Praveen Deevi and 2Thanjaivadivel M
*1O2 Technologies Inc, California, USA.

2Associate Professor, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Tamil Nadu, Chennai, India.

Abstract
Now classic code analysis methods are already obsolete with respect to detecting serious hidden or deeply-rooted vulnerabilities. As software
complexity keeps going up, any escalation in cyber-attacks is threatening to demand more sophisticated methods of detection. This paper
describes a new combined static and dynamic analysis approach with a convolutional neural network to enhance vulnerability discovery while
constructing neural code embeddings. It is capable of transforming source code into two-dimensional pictures so that the intricate features are
picked up by the CNN, something a conventional model would find difficult to analyse. This dual use of both static and dynamic analyses tends
to fortify the model further in discovering the secretive and less apparent security flaws in the system. Data completeness and improvement for
model reliability were ensured with preprocessing tools such as K-Nearest Neighbours (KNN) imputation and Z-score normalization. They fill
in the gaps in the data and standardize input data for fast and consistent training. With that, the proposed model offers an overall accuracy of
98.5%, well above that of the conventional methods. An effective model of this nature therefore stands to be a useful and efficient approach to
modern secure software development pipelines when it proves highest in scalability and detection rate. This deep learning framework thus attests
to the efficacy of advanced artificial intelligence toward securing software with the smartly and automatically analysed code.

Keywords: Convolutional neural network, software vulnerability detection, automated code analysis, code preprocessing, k-nearest neighbours,
hybrid analysis.

1. Introduction
The task thrives in a hotter spotlight due to the rising
largeness and complexity of modern software systems and
consequently the endeavour of ensuring their security is
becoming more and more complicated [1] [2]. Many types of
software development processes exist as systematized
collections of various operations, functions, procedures and
various tasks [3]. H Nevertheless, these means typically are
inefficient when faced with entrenched security loopholes [4].
They tend to struggle in handling massive codebases, dealing
with obfuscated code, or detecting sophisticated evasion
strategies employed by modern attackers [5] [6]. According to it,
the critical vulnerabilities, such as the buffer overflow,
injection attacks and insecure encryption configurations,
linger on undetected [7] [8]. The inadequacy of existing static
techniques to address the challenge posed by the evolving
threat landscape is aptly demonstrated by these limitations
and the consequent development of another set of adaptive
and intelligent solutions that strive to keep up with modern
attack methodologies [9] [10]. The escalating scale and intricacy
of contemporary software systems have cast a sharper
spotlight on the daunting challenge of maintaining robust
security [11] [12]. As software development evolves through
structured processes comprising numerous interconnected
tasks, operations, and modules, the risk landscape
simultaneously expands [13]. Traditional security mechanisms,
though systematic, often fall short in confronting deeply
embedded vulnerabilities that can compromise entire systems

[14] [15]. These conventional methods are frequently
overwhelmed by the sheer volume of code, obfuscated logic,
and the sophisticated evasion techniques exploited by modern
adversaries [16]. As a result, critical threats such as buffer
overflows, injection flaws, and weak cryptographic
configurations often remain concealed and unaddressed [17].
Static analysis tools, once seen as foundational to
vulnerability detection, increasingly show their limitations in
adapting to dynamic and rapidly evolving attack vectors [18]

[19]. This growing inadequacy underscores the need for more
intelligent, context-aware, and adaptive approaches capable of
proactively identifying and mitigating security flaws in real
time, aligned with the complexity and fluidity of present-day
software ecosystems [20] [21].
Detection of vulnerabilities becomes a multi-pronged
exercise, which is guided by different considerations, mainly
inherent program complexities, usage of obfuscation schemes,
dynamics of arriving zero-day vulnerabilities, and occasional
false positives [22] [23]. In most cases, scalability is normally
regarded as one of the weak points associated with classical
tools, particularly when applied to large-scale software
systems [24] [25]. In most instances, conventional methods of
detection are actually rule-based-these approaches rely on
predefined patterns or known signatures of some explicit
malicious behaviour [26] [27]. Hence, they may work well in the
case of known threats, but they firmly lack any adaptation to
new attack vector [28]. This rigidity thereby impairs their
functional status in the dynamic threat landscape of now

Volume: 1 Issue: 2 Pages: 38-45

Received: 11/September/2021 Int. J Res. Acad. World. 2021; 1(2):38-45 Accepted: 17/October/2021

E-ISSN: 2583-1615

Impact Factor: 3.133

< 39 >

https://academicjournal.ijraw.com IJRAW

where attackers are forever changing their attack strategies [29]

[30]. Therefore, there lies a growing necessity for detection
systems that are intelligent, flexible, and adaptable in real
time to respond to threats that are new and unseen eats [31].
While well on the way to great success in that their intended
application would be to real threat situation, other methods
including machine-learning have their own drawbacks [32].
Rule-based static analyses and symbolic execution continue to
be burdened by high rates of false positives, often flagging
benign code as being vulnerable [33] [34]. On the other hand,
ML solutions are adaptable and thus find themselves
frequently constrained by the scaling problems and need for
huge amounts of labelled data for training [35] [36]. These
techniques typically depend on manually engineered features
or historical vulnerability data, which limits their
effectiveness when dealing with new threats [37]. Ost of these
techniques are designed using manually engineered features
or exploit historical vulnerability data, thus limiting their
effectiveness in the context of emerging threats [38]. These
limitations create the need for more autonomous and
generalizable solutions that will efficiently work in different
software environments [39]. Finally, functional incorporation
of these advanced systems into the existing development
workflow will, in all likelihood, also be a technical challenge
requiring special expertise and infrastructure [40].
This study presents a fresh and unique approach that employs
CNNs for automated vulnerability detection to bridge the gaps
and drawbacks of older techniques. The proposed framework
transforms the source code structure into feature maps such
that the end-user deep learning model can learn complex and
abstract patterns with time, directly via the data base rather
than any manual feature engineering. This further makes the
detection highly efficient as compared to extensive
dependency on expertise from human minds to reach the same
reliability. Through learning from the raw structural and
semantic forms of code, CNN becomes possible to find some
detectable and previously subtle vulnerabilities. Additionally,
being adaptable makes it resilient against the threats which
will evolve and reduces the false positive count, which has
always been a serious drawback in rule-based systems. There
is high automation, which supports scalability, making it
viable for this solution to solve the problems of analysing
large and complex codebases. Overall, this proposed CNN-
based methodology provides a highly efficient and futuristic
solution to the most pressing challenges in cybersecurity.

Now, Main Contributions of this Research Paper are:
• The approach discussed here is CNN based methodology

which implies that the methodology learns for even
complex semantic or structural patterns hidden in source
code to yield an effective detection of vulnerabilities.

• It makes use of KNN imputation, Z-score normalization,
and min-max scaling preprocessing techniques to prepare
a data for being of good quality and consistent.

• The model integrates functions like pooling, activation
functions, and classification into convolutional layers,
hence making model building such as credible and
automatic process in developing secure software.

The organization of this paper is as follows: Section 2 reviews
existing vulnerability detection techniques and highlights their
limitations in identifying complex software flaws. Section 3
details the proposed CNN-based detection methodology,
including data collection, preprocessing, and model
architecture. Section 4 presents experimental results using key

performance metrics, along with an analysis of the model's
effectiveness. Finally, Section 5 summarizes the contributions
of this work and outlines directions for future research aimed
at improving software security.

2. Literature Review
IoT-based health framework supports patient monitoring
through smooth integration with cloud infrastructures. It
addresses scalability and data quality issues by using k-NN
for imputing missing values, Z-score normalization, and
ChaCha20 encryption for secure storage [41]. IoT sensor data
is pre-processed, encrypted, and stored in the cloud for
effective management [42]. Performance metrics show
increasing encryption levels and latency with larger datasets,
demonstrating the architecture's efficiency for real-time
healthcare monitoring [43]. A safe document clustering scheme
for IoT applications integrates Multivariate Quadratic
Cryptography with Affinity Propagation [44] [45]. The system
ensures data confidentiality through strong encryption and
performs adaptive encrypted document clustering [46]. Aimed
at resolving scalability issues and enhancing clustering
efficiency while minimizing computational overhead, the
framework enables secure data sharing in IoT contexts such
as smart cities and healthcare [47] [48]. Test results show
improvements in accuracy, security, and performance, making
it suitable for handling sensitive IoT data [49].
The impacts of internet-based finance and cloud computing
on urban-rural income disparities are examined in the context
of a growing e-commerce era. Digital finance and
connectivity are shown to contribute to financial inclusion and
balanced economic development [50]. Using panel data
estimation over several years, the study evaluates how digital
financial services influence income levels and reduce
interregional income disparities in a rapidly digitizing
economy [51]. Optimizing cloud computing infrastructure is
essential for enhancing big data processing performance,
scalability, efficiency, and cost management [52] [53]. Key
challenges include security, energy efficiency, resource
utilization, and system reliability [54]. Solutions such as load
balancing, auto-scaling, and dynamic resource allocation
alongside vertical/horizontal scaling and robust security
measures support enterprise operations [55]. Real-time
monitoring, automation, and compliance support help reduce
costs and maintain a strong infrastructure for diverse
workloads [56].
A machine learning-based approach is proposed to improve
chronic disease management in the elderly, inspired by the
SURGE-Ahead Project [57]. The focus is on developing
personalized AI tools for geriatric care, aimed at supporting
clinical decision-making with real-time patient-specific
predictions [58]. Techniques such as Support Vector Machines,
Decision Trees, and Neural Networks complemented by
preprocessing and feature selection enable effective chronic
disease prediction and timely healthcare intervention [59]. The
integration of cloud computing and AI-driven sentiment
analysis is explored as a transformative force in customer
relationship management [60]. By analyzing customer
interactions across multiple channels, AI models classify
sentiments and predict behaviors, supporting tailored
communication strategies [61]. The approach aims to boost
customer satisfaction, engagement, and retention. Cloud
platforms facilitate scalability and real-time data processing,
enabling organizations to deliver timely and sentiment-
aligned responses [62]. An AI-driven architecture is introduced
for secure mHealth systems, combining Hierarchical Identity-

https://academicjournal.ijraw.com/

< 40 >

https://academicjournal.ijraw.com IJRAW

Based Encryption, Role-Based Access Control, and Secure
Multi-Party Computation [63]. The framework safeguards data
sharing through hierarchical encryption and controlled access.
AI aids in efficient role delegation and secure data processing,
achieving both security and scalability [64]. This approach
effectively meets privacy and collaboration needs for
managing mHealth data securely and efficiently [65].

2.1. Problem Statement
The exponential growth of IoT devices, cloud computing
platforms, and AI-powered applications across domains such
as healthcare, smart cities, and financial services, the volume
and sensitivity of data being processed have surged
dramatically [66]. These systems demand high levels of
security, scalability, real-time responsiveness, and
adaptability to evolving threats [67]. Existing frameworks
attempt to address these requirements through various
mechanisms such as encryption, clustering algorithms, and
cloud resource optimization but they often fall short in one
critical aspect: the ability to detect and mitigate software
vulnerabilities embedded within the codebases that underpin
these infrastructures [68] [69]. Vulnerabilities in software,
especially in large-scale, dynamic, and heterogeneous
environments, can lead to data breaches, unauthorized access,
system failures, and severe financial and operational
repercussions [70]. Traditional static or dynamic analysis tools
alone are limited by their scope static methods may miss
runtime issues, while dynamic approaches can be resource-
intensive and incomplete [72]. As systems become more
complex and interconnected, especially in security-sensitive
areas like mHealth and smart IoT frameworks, there is a
pressing need for advanced, intelligent mechanisms capable
of identifying vulnerabilities with greater precision, context-
awareness, and adaptability to protect both system integrity
and user trust [72].
To effectively confront these emerging challenges, there is a
growing shift toward hybrid and AI-enhanced vulnerability
detection techniques that combine the complementary
strengths of both static and dynamic analysis [73]. One
promising direction lies in leveraging neural code embeddings
deep learning-based representations that capture the syntactic
structure and semantic context of code [74] [75]. These
embeddings can model intricate code behaviors and patterns,
enabling more accurate identification of subtle or obfuscated
vulnerabilities that traditional tools may overlook [76]. When
integrated with a hybrid static-dynamic analysis framework,
neural embeddings enhance the system's ability to reason
about code both at rest and during execution [77] [78]. This
synergy allows for comprehensive vulnerability detection
with improved accuracy, scalability, and resilience against
modern evasion tactics [79]. Such intelligent systems are well-
suited for dynamic environments like cloud-hosted
applications and real-time IoT systems, where adaptability
and fast threat response are paramount [80]. Therefore, a robust
solution that incorporates neural representations of code with
hybrid analysis techniques holds significant potential to
transform vulnerability management in contemporary
software systems [81].
To address these issues, the proposed approach Leveraging
Neural Code Embeddings and Hybrid Static-Dynamic
Analysis for Enhanced Vulnerability Detection aims to
improve the accuracy and robustness of identifying software
vulnerabilities in modern systems. By integrating deep
learning-based code embeddings with a hybrid analysis
strategy that combines the strengths of static and dynamic

techniques, this framework enables more contextual, scalable,
and precise vulnerability detection. This enhanced detection
capability supports the secure development and deployment
of intelligent, cloud-integrated systems, mitigating risks in
real-time applications such as mHealth, IoT infrastructures,
and AI-powered services.

3. Proposed Methodology
The proposed methodology implements a highly capable and
efficient software vulnerability detection scheme based on
CNN. The process will begin with a well-labeled collection of
security vulnerabilities containing both vulnerable and non-
vulnerable samples of code. Preprocessing of data usually
includes cleaning up data such as the removal of noise and
inconsistencies, and/or Z-score normalization for the
standardization of feature values for better performance of the
model with respect to the training data. After the cleaning
process, the next stage will transform the cleaned data into a
two-dimensional format to allow CNN to extract deep
structural and semantic features from the code. This capability
allows the detection of complex and latent vulnerabilities,
which may be lost or overlooked in the traditional techniques.
The input is classified by the CNN as either being vulnerable
or non-vulnerable, which is itself an automated, robust, and
effective solution. The achieved accuracy of the model stands
at 98.5%, which is much better than that using the
conventional methods thus making it highly scalable and
effective in real-world secure software development
environments. Figure 1 represents the Overall architecture for
the proposed methodology

Fig 1: Overall Architecture for Proposed Methodology

3.1. Data Collection
A detailed Dataset of Security Vulnerabilities makes one
more acquainted with the changing world of cyber threats.
The digital world is found necessary with daily routines, and
now it becomes indispensable for a person to understand
digital threats. The dataset contains a massive amount of
information on different known vulnerabilities making
themselves accessible to his cybersecurity analysts,
researchers, and data analysts studying its trends and risks
assessment while developing proactive defences. Looking for
information on historical trends for making predictive
modelling of the future threats seems to be possible with this
dataset that supports decision-making for resilience against
threats. Propel yourselves at the point of making informed,
agile decisions while understanding real-world data utilization
to show vigilance and innovation in the face of constant
change around protecting systems and networks and sensitive
data against emerging cyber risk. After collected, pre-
processing takes place applying data cleaning and
normalization and scaling of the dataset into CNN based

https://academicjournal.ijraw.com/

< 41 >

https://academicjournal.ijraw.com IJRAW

vulnerability detection model for making them ready for
detection boosting-level accuracies.

3.2. Pre-processing
K-Nearest Neighbours (KNN) Imputation is a method to
enhance the quality of data by estimating missing values by
targeting a similar data point, whereas normalization ensures
that all features are on the same scale. Convolutional layers
try to extract structural patterns from tokenized code and use
REL for further improvement of feature learning. Max
pooling will carry on the task of reducing the complexity of
the data features, whereas the last fully connected layer will
classify code either as vulnerable or secure with the help of
SoftMax. The model operates under the cross-entropy loss
which helps fine-tune the detection accuracy thereby reducing
false positives.

i). Data Cleaning: Handling Missing Data Using Mean

Imputation
This process resolves the problem of missing values by
substituting their values with the means of existing values of a
feature. This maintains uniformity and prevents the model
from learning erroneous patterns from the data. Mean
imputation maintains the statistical properties of the dataset.
This impacts model accuracy and robustness. Thus, for the
feature vector. Given a feature vector , in
which some values are removed, mean imputation can be
computed using Equation (1):

 (1)

Here, is the total number of samples, and is the number
of missing values. Missing values are replaced with the mean

, maintaining data integrity. M, which includes the indices
of the non-missing values . The mean of these known
values is then calculated and used to substitute the missing
ones, ensuring that data integrity is preserved.

ii). Data Normalization: Min-Max Normalization
Min-Max normalization scales feature values to a fixed range
between 0 and 1. This prevents features with larger values
from dominating those with smaller ranges. It improves
training speed and convergence for deep learning models.
Normalization is essential for maintaining balanced feature
importance. Given a feature vector , each
value is transformed using in Equation (2):

 (2)

Here, xi′ is the normalized version of the original data point
xi. Where and are the minimum and maximum
values of the feature vector . This process ensures that all
values are within the [0, 1] range. This transformation ensures
all data values are scaled proportionally, preventing features
with large ranges from dominating others during model
training.

3.3. Vulnerability Detection using CNN
The proposed model is implemented in a CNN that seems to
detect software vulnerabilities from two-dimensional
representations of the source text. The model extracts
semantic and syntactic features from the source code using
convolutional and pooling layers. The network learns to

recognize a pattern that has an implicit representation of
security flaws and is often very complex for others to detect
or use as ground truth to perceive. The learning process is
completed by exposing the network to labelled data, thus
allowing it to differentiate accurately between vulnerable and
non-vulnerable code. Because of its capacity to handle a
massive amount of data, the method is obviously scalable and
efficient. In addition, it offers a more accurate detection along
with automating convenience for its robust functioning.

i). Convolution Layer
Filters are applied to the symbolic representation of codes by
various convolutional layers in order to recognize potential
representative patterns. It recognizes the features. This
process is useful in enhancing feature extraction and
contributing to the classification of vulnerability. The
operation helps to realize an efficient detection of deeply
hidden structures. The central operation of CNN is
convolution which extracts the relevant features from its input
(tokenized code representation). It is mathematically defined
in Equation (3):

 (3)

Where input feature map (tokenized code
representation) convolution kernel
(filter) bias term output feature ma This
operation detects key structures such as insecure API calls,
function misuse, or privilege patterns in source code.

ii). Activation Function (ReLU)
RELU activation map introduces non-linearity by zeroing
negative values while retaining positive values, thus enabling
the network to focus on meaningful patterns and disregard the
irrelevant noise. This greatly speeds up learning and adds
another layer of depth to the model's understanding of
variations. ReLU is simple but powerful. Equation (4):

 (4)

The usage of ReLU is defined as f(x) is equal to x if the input
value is positive, and 0 if the input value is negative. This
very simple and powerful transformation brings non-linearity
into the model such that it can learn complex behaviors in the
positive parts, holding on to the relevant features and then
dropping negative noise. This makes the model focus on the
important parts and not on the irrelevant values. Therefore,
dimensionality reduction occurs by max pooling while
retaining the important features.

iii). Pooling Layer (Max Pooling)
Simplifying data for computations or use thereafter, reduced
computing power is another outcome of pooling. In addition,
pooling achieves better generalization and reduced
overfitting. This process also speeds up the entire model and
makes it more efficient when it comes to training with the use
of max pooling, according to Equation (5):

 (5)

In the max pooling step, represents the maximum value
selected from a region of the feature map. This region
includes nearby elements around position in the output

https://academicjournal.ijraw.com/

< 42 >

https://academicjournal.ijraw.com IJRAW

of the convolution layer . Pooling reduces
dimensionality and computational load while preserving the
most prominent features, such as signs of vulnerabilities.

iv). Fully Connected Layer (Classification)
This layer aggregates the entire set of features extracted
previously and decides on the final classification. It evaluates
the probability of each class label by applying the SoftMax
function. Based on the learned features, the method finally
determines if the code is vulnerable or secure, which is
represented by Equation (6):

 (6)

In this formula, the condition software is the probability
under which the input belongs to class i, interpolated via the
SoftMax function with raw logit or unnormalized score
class k, with the denominator containing the sum of
exponentials of the logits for all possible classes. Thus, the
transition from scores into a probability distribution helps the
model to classify code as either vulnerable or not.

v). Loss Function (Cross-Entropy Loss)
Cross-entropy loss measures the discrepancy between true
and predicted labels. It penalizes wrong predictions more than
the right ones so as to improve the prediction accuracy of the
model. During training, the model fits its parameters in such a
way as to minimize this loss, leading to better classification
and higher detection accuracy. The equation for optimizing
the performance of the model using cross-entropy loss is
expressed as follows in Equation (7):

 (7)

L measures loss on the discrepancy between the observed
labels and the predicted probabilities over the N samples.
Logarithmically speaking, it puts an enormous penalty on the
majority of wrong predictions. Such situations arise more
where the model was overly confident but still wrong. This
loss is hence minimized to maximize the accuracy on
vulnerabilities during training.

4. Result and Discussion
This section assesses the performance of the developed deep
learning model concerning software vulnerability detection
and provides an overall view of its effectiveness using
standard evaluation parameters. The model is tested against
all Accuracy, Precision, Recall, and F1-Score-together
ensuring the code segments are classified with high reliability.
When preprocessing techniques were invoked along with the
CNN architecture, there was a massive change in the
performance of the experimental model. Such results, indeed,
indicate not only the robustness of the approach per se but
also its potential in real-life situations. The following
subsections shall state the performance of the model and
compare it with conventional methods to validate the
strategies concerning overall efficiency and reliability.

4.1. Performances Metrics
Model evaluation based on established criteria such as
Accuracy, Precision, Recall, and F1-Score is shown in Figure
2. The model achieves excellent Accuracy of 98.50%.
Therefore, in a way, most of the inputs are rightly classified
by the model. It yields a Precision of 99.10%, almost 100% in

identifying code segments as being potentially vulnerable,
which, in turn, would make them true positive. With the
Recall being at 98.20% for catching most of the real
vulnerabilities, the model receives high praise. I mean, really,
F1-Score, which stands up at 98.65%, implies a pretty good
trade-off especially in Favor of the precision and recall,
substantiating the power and working capacity of this model
to detect security weaknesses. Overall, all these results
substantiate the model's readiness for the practical issue of
vulnerability detection in a dependable and efficient way.

Fig 2: Comparison of Model Evaluation Metrics

5. Conclusion
The recommended approach for this research is predicated on
CNN, benefiting from its process to develop a robust and
scalable solution to the software vulnerability detection
problem through converting the source code into structured
2D representations for deep semantic and structural feature
extraction-and this eliminates the need for manual feature
extraction, thus enhancing the optimization of the detection
process. CNN unlike the rule-based and symbolic analysis of
existing approaches can identify complex and dormant
vulnerabilities at minimal human involvement. Experimental
results demonstrate that the model exhibits potency, with
accuracy and precision of up to 98.5% and 99.1%,
respectively, in identifying vulnerabilities with minimum
false positives, further attesting to the method's reliability for
real-world applications and provision of an intelligent
homemade automated framework to shield the software
systems against dynamically changing cyber threats. Future
work may be geared towards the extension of the model by
complementing it with recurrent neural networks (RNNs) or
transformer-based architectures to capture long-range
dependencies in code. Besides, diversity of programming
languages and vulnerability types can be widened in the
dataset to appreciate the generalizability and robustness.

References
1. He D, Gu H, Li T, Du Y, Wang X, Zhu S & Guizani N.

Toward hybrid static-dynamic detection of vulnerabilities
in IoT firmware. IEEE Network. 2020; 35(2):202-207.

2. Pulakhandam W & Samudrala VK. Automated Threat
Intelligence Integration to Strengthen SHACS For Robust
Security in Cloud-Based Healthcare Applications.
International Journal of Engineering & Science
Research, 2020, 10(4).

https://academicjournal.ijraw.com/

< 43 >

https://academicjournal.ijraw.com IJRAW

3. Lin G, Zhang J, Luo W, Pan L, Xiang Y, De Vel O &
Montague P. Cross-project transfer representation
learning for vulnerable function discovery. IEEE
Transactions on Industrial Informatics. 2018; 14(7):3289-
3297.

4. Dondapati K. Clinical implications of big data in
predicting cardiovascular disease using SMOTE for
handling imbalanced data. Journal of Cardiovascular
Disease Research. 2020; 11(9):191-202.

5. Liu S, Lin G, Qu L, Zhang J, De Vel O, Montague P &
Xiang Y. CD-VulD: Cross-domain vulnerability
discovery based on deep domain adaptation. IEEE
Transactions on Dependable and Secure Computing.
2020; 19(1):438-451.

6. Grandhi SH. Blockchain-enabled software development
traceability: Ensuring secure and transparent software
lifecycle management. International Journal of
Information Technology & Computer Engineering, 2020,
8(3).

7. Gao J, Jiang Y, Liu Z, Yang X, Wang C, Jiao X & Sun J.
Semantic learning and emulation based cross-platform
binary vulnerability seeker. IEEE Transactions on
Software Engineering. 2019; 47(11):2575-2589.

8. Natarajan DR. AI-Generated Test Automation for
Autonomous Software Verification: Enhancing Quality
Assurance Through AI-Driven Testing. Journal of
Science and Technology, 2020, 5(5).

9. Ma H, Jia C, Li S, Zheng W & Wu D. Xmark: dynamic
software watermarking using Collatz conjecture. IEEE
Transactions on Information Forensics and Security.
2019; 14(11):2859-2874.

10. Srinivasan K. Neural network-driven Bayesian trust
prediction model for dynamic resource management in
cloud computing and big data. International Journal of
Applied Science Engineering and Management, 2020,
14(1).

11. Ni Q, Fan Z, Zhang L, Nugent CD, Cleland I, Zhang Y,
& Zhou N. Leveraging wearable sensors for human daily
activity recognition with stacked denoising
autoencoders. Sensors. 2020; 20(18):5114.

12. Chauhan GS. Utilizing data mining and neural networks
to optimize clinical decision-making and patient outcome
predictions. International Journal of Marketing
Management. 2020; 8(4):32-51.

13. Menéndez HD & Llorente JL. Mimicking anti-viruses
with machine learning and entropy profiles. Entropy.
2019; 21(5):513.

14. Gollapalli VST. Enhancing disease strati fication using
federated learning and big data analytics in healthcare
systems. International Journal of Management Research
and Business Strategy. 2020; 10(4):19-38.

15. Alswaina F & Elleithy K. Android malware family
classification and analysis: Current status and future
directions. Electronics. 2020; 9(6):942.

16. Gollapalli VST. Scalable Healthcare Analytics in the
Cloud: Applying Bayesian Networks, Genetic
Algorithms, and LightGBM for Pediatric Readmission
Forecasting. International Journal of Life Sciences
Biotechnology Pharma Sciences, 2020, 16(2).

17. Calegari R, Ciatto G, Mariani S, Denti E & Omicini A.
LPaaS as micro-intelligence: Enhancing IoT with
symbolic reasoning. Big Data and Cognitive Computing,
2018; 2(3):23.

18. Ganesan T. Deep learning and predictive analytics for
personalized healthcare: unlocking EHR insights for

patient-centric decision support and resource
optimization. International Journal of HRM and
Organizational Behavior, 2020, 8(3).

19. Hou J, Chen J & Chau LP. Light field image compression
based on bi-level view compensation with rate-distortion
optimization. IEEE Transactions on Circuits and Systems
for Video Technology. 2018; 29(2):517-530.

20. Panga NKR & Thanjaivadivel M. Adaptive DBSCAN
and Federated Learning-Based Anomaly Detection for
Resilient Intrusion Detection in Internet of Things
Networks. International Journal of Management
Research and Business Strategy, 2020, 10(4).

21. Saeedi S, Bodin B, Wagstaff H, Nisbet A, Nardi L,
Mawer J & Furber S. Navigating the landscape for real-
time localization and mapping for robotics and virtual
and augmented reality. Proceedings of the IEEE. 2018;
106(11):2020-2039.

22. Dyavani NR & Hemnath R. Blockchain-integrated cloud
software networks for secure and efficient ISP federation
in large-scale networking environments. International
Journal of Engineering Research and Science &
Technology, 2020, 16(2).
https://ijerst.org/index.php/ijerst/article/view/614/558

23. Patel CI, Labana D, Pandya S, Modi K, Ghayvat H &
Awais M. Histogram of oriented gradient-based fusion of
features for human action recognition in action video
sequences. Sensors. 2020; 20(24):7299.

24. Durai Rajesh Natarajan & Sai Sathish Kethu.
Decentralized anomaly detection in federated learning:
Integrating one-class SVM, LSTM networks, and secure
multi-party computation on Ethereum blockchain.
International Journal of Computer Science Engineering
Techniques, 2019, 5(4).

25. Li G, Shuang F, Zhao P & Le C. An improved butterfly
optimization algorithm for engineering design problems
using the cross-entropy method. Symmetry. 2019;
11(8):1049.

26. Nagarajan H & Kurunthachalam A. Optimizing database
management for big data in cloud environments.
International Journal of Modern Electronics and
Communication Engineering, 2018, 6(1).

27. Lee Y, Park J, Choe A, Cho S, Kim J & Ko H.
Mimicking human and biological skins for
multifunctional skin electronics. Advanced Functional
Materials. 2020; 30(20):1904523.

28. Basani DKR & Aiswarya RS. Integrating IoT and
robotics for autonomous signal processing in smart
environment. International Journal of Information
Technology and Computer Engineering, 2018, 6(2).

29. Wei M, Huang J, Xie X, Liu L, Wang J & Qin J. Mesh
denoising guided by patch normal co-filtering via kernel
low-rank recovery. IEEE transactions on visualization
and computer graphics. 2018; 25(10):2910-2926.

30. Gudivaka BR & Palanisamy P. Enhancing software
testing and defect prediction using Long Short-Term
Memory, robotics, and cloud computing. International
Journal of modern electronics and communication
Engineering, 2018, 6(1).

31. Gao Z, Jiang L, Xia X, Lo D & Grundy J. Checking
smart contracts with structural code embedding. IEEE
Transactions on Software Engineering. 2020;
47(12):2874-2891.

32. Kodadi S & Kumar V. Lightweight deep learning for
efficient bug prediction in software development and
cloud-based code analysis. International Journal of

https://academicjournal.ijraw.com/

< 44 >

https://academicjournal.ijraw.com IJRAW

Information Technology and Computer Engineering,
2018, 6(1).

33. Wang Z, Du B & Guo Y. Domain adaptation with neural
embedding matching. IEEE transactions on neural
networks and learning systems. 2019; 31(7):2387-2397.

34. Bobba J & Prema R. Secure financial data management
using Twofish encryption and cloud storage solutions.
International Journal of Computer Science Engineering
Techniques. 2018; 3(4):10–16.

35. Arora M & Kansal V. Character level embedding with
deep convolutional neural network for text normalization
of unstructured data for Twitter sentiment
analysis. Social Network Analysis and Mining.
2019; 9(1):12.

36. Gollavilli VSB & Thanjaivadivel M. Cloud-enabled
pedestrian safety and risk prediction in VANETs using
hybrid CNN-LSTM models. International Journal of
Information Technology and Computer Engineering.
2018; 6(4):77–85. ISSN 2347–3657.

37. Li S, Hu J, Cui Y & Hu J. DeepPatent: patent
classification with convolutional neural networks and
word embedding. Scientometrics. 2018; 117(2):721-744.

38. Nippatla RP & Palanisamy P. Enhancing cloud
computing with eBPF powered SDN for secure and
scalable network virtualization. Indo-American Journal
of Life Sciences and Biotechnology, 2018, 15(2).

39. Pan S, Hu R, Fung SF, Long G, Jiang J & Zhang C.
Learning graph embedding with adversarial training
methods. IEEE transactions on cybernetics. 2019;
50(6):2475-2487.

40. Budda R & Pushpakumar R. Cloud Computing in
Healthcare for Enhancing Patient Care and Efficiency.
Chinese Traditional Medicine Journal. 2018; 1(3):10-15.

41. Li Z, Zhang Z, Qin J, Zhang Z & Shao L. Discriminative
fisher embedding dictionary learning algorithm for object
recognition. IEEE transactions on neural networks and
learning systems. 2019; 31(3):786-800.

42. Vallu VR & Palanisamy P. AI-driven liver cancer
diagnosis and treatment using cloud computing in
healthcare. Indo-American Journal of Life Sciences and
Biotechnology, 2018, 15(1).

43. Kwon BC, Choi MJ, Kim JT, Choi E, Kim YB, Kwon S
& Choo J. Retainvis: Visual analytics with interpretable
and interactive recurrent neural networks on electronic
medical records. IEEE transactions on visualization and
computer graphics. 2018; 25(1):299-309.

44. Jayaprakasam BS & Hemnath R. Optimized microgrid
energy management with cloud-based data analytics and
predictive modelling. International Journal of modern
electronics and communication Engineering. 2018;
6(3):79–87.

45. Tellez D, Litjens G, Van der Laak J & Ciompi F. Neural
image compression for gigapixel histopathology image
analysis. IEEE transactions on pattern analysis and
machine intelligence. 2019; 43(2):567-578.

46. Mandala RR & Purandhar N. Optimizing secure cloud-
enabled telemedicine system using LSTM with stochastic
gradient descent. Journal of Science and Technology,
2018, 3(2).

47. Zhang Z, Lai Z, Huang Z, Wong WK, Xie GS, Liu L &
Shao L. Scalable supervised asymmetric hashing with
semantic and latent factor embedding. IEEE Transactions
on Image Processing. 2019; 28(10):4803-4818.

48. Garikipati V & Palanisamy P. Quantum-resistant cyber
defence in nation-state warfare: Mitigating threats with

post-quantum cryptography. Indo-American Journal of
Life Sciences and Biotechnology, 2018, 15(3).

49. He L, Wang G & Hu Z. Learning depth from single
images with deep neural network embedding focal
length. IEEE Transactions on Image Processing. 2018;
27(9):4676-4689.

50. Ubagaram C & Mekala R. Enhancing data privacy in
cloud computing with blockchain: A secure and
decentralized approach. International Journal of
Engineering & Science Research. 2018; 8(3):226–233.

51. Hernandez-Suarez A, Sanchez-Perez G, Toscano-Medina
K, Perez-Meana H, Portillo-Portillo J, Sanchez V &
García Villalba LJ. Using twitter data to monitor natural
disaster social dynamics: A recurrent neural network
approach with word embeddings and kernel density
estimation. Sensors. 2019; 19(7):1746.

52. Ganesan S & Kurunthachalam A. Enhancing financial
predictions using LSTM and cloud technologies: A data-
driven approach. Indo-American Journal of Life Sciences
and Biotechnology, 2018, 15(1).

53. Hong W & Yuan J. Fried binary embedding: From high-
dimensional visual features to high-dimensional binary
codes. IEEE Transactions on Image Processing. 2018;
27(10):4825-4837.

54. Musam VS & Kumar V. Cloud-enabled federated
learning with graph neural networks for privacy-
preserving financial fraud detection. Journal of Science
and Technology, 2018, 3(1).

55. Li X, Wang L, Xin Y, Yang Y & Chen Y. Automated
vulnerability detection in source code using minimum
intermediate representation learning. Applied Sciences.
2020; 10(5):1692.

56. Musham NK & Pushpakumar R. Securing cloud
infrastructure in banking using encryption-driven
strategies for data protection and compliance.
International Journal of Computer Science Engineering
Techniques. 2018; 3(5):33–39.

57. Kim J, Yoon J, Park E & Choi S. Patent document
clustering with deep embeddings. Scientometrics. 2020;
123(2):563-577.

58. Radhakrishnan P & Mekala R. AI-Powered Cloud
Commerce: Enhancing Personalization and Dynamic
Pricing Strategies. International Journal of Applied
Science Engineering and Management, 2018, 12(1).

59. Chalkidis I & Kampas D. Deep learning in law: early
adaptation and legal word embeddings trained on large
corpora. Artificial Intelligence and Law. 2019;
27(2):171-198.

60. Nagarajan H & Kumar RL. Enhancing healthcare data
integrity and security through blockchain and cloud
computing integration solutions. International Journal of
Engineering Technology Research & Management, 2020,
4(2).

61. Chen H, Wang Y, Xu C, Xu C & Tao D. Learning
student networks via feature embedding. IEEE
Transactions on Neural Networks and Learning Systems.
2020; 32(1):25-35.

62. Gudivaka BR & Thanjaivadivel M. IoT-driven signal
processing for enhanced robotic navigation systems.
International Journal of Engineering Technology
Research & Management, 2020, 4(5).

63. Li X, Jiang H, Kamei Y & Chen X. Bridging semantic
gaps between natural languages and APIs with word
embedding. IEEE Transactions on Software Engineering.
2018; 46(10):1081-1097.

https://academicjournal.ijraw.com/

< 45 >

https://academicjournal.ijraw.com IJRAW

64. Chetlapalli H & Pushpakumar R. Enhancing accuracy
and efficiency in AI-driven software defect prediction
automation. International Journal of Engineering
Technology Research & Management, 2020, 4(8).

65. Lin Z, Huang Y & Wang J. RNN-SM: Fast steganalysis
of VoIP streams using recurrent neural network. IEEE
Transactions on Information Forensics and Security.
2018; 13(7):1854-1868.

66. Budda R & Mekala R. Cloud-enabled medical image
analysis using ResNet-101 and optimized adaptive
moment estimation with weight decay optimization.
International Research Journal of Education and
Technology, 2020, 03(02).

67. Hua W, Sui Y, Wan Y, Liu G & Xu G. FCCA: Hybrid
code representation for functional clone detection using
attention networks. IEEE Transactions on Reliability.
2020; 70(1):304-318.

68. Vallu VR & Rathna S. Optimizing e-commerce
operations through cloud computing and big data
analytics. International Research Journal of Education
and Technology, 2020, 03(06).

69. Hu M, Yang Y, Shen F, Xie N, Hong R & Shen HT.
Collective reconstructive embeddings for cross-modal
hashing. IEEE Transactions on Image Processing. 2018;
28(6):2770-2784.

70. Jayaprakasam BS & Padmavathy R. Autoencoder-based
cloud framework for digital banking: A deep learning
approach to fraud detection, risk analysis, and data
security. International Research Journal of Education
and Technology, 2020, 03(12).

71. Konate A & Du R. Sentiment analysis of code-mixed
Bambara-French social media text using deep learning
techniques. Wuhan University Journal of Natural
Sciences. 2018; 23(3):237-243.

72. Mandala RR & Kumar VKR. AI-driven health insurance
prediction using graph neural networks and cloud
integration. International Research Journal of Education
and Technology, 2020, 03(10).

73. Li M, Fei Z, Zeng M, Wu FX, Li Y, Pan Y & Wang J.
Automated ICD-9 coding via a deep learning
approach. IEEE/ACM transactions on computational
biology and bioinformatics. 2018; 16(4):1193-1202.

74. Ubagaram C & Kurunthachalam A. Bayesian-enhanced
LSTM-GRU hybrid model for cloud-based stroke
detection and early intervention. International Journal of
Information Technology and Computer Engineering,
2020, 8(4).

75. Tang W, Li B, Tan S, Barni M & Huang J. CNN-based
adversarial embedding for image steganography. IEEE
Transactions on Information Forensics and Security.
2019; 14(8):2074-2087.

76. Ganesan S & Hemnath R. Blockchain-enhanced cloud
and big data systems for trustworthy clinical decision-
making. International Journal of Information Technology
and Computer Engineering, 2020, 8(3).

77. Jin L, Li K, Li Z, Xiao F, Qi GJ & Tang J. Deep
semantic-preserving ordinal hashing for cross-modal
similarity search. IEEE transactions on neural networks
and learning systems. 2018; 30(5):1429-1440.

78. Musam VS & Purandhar N. Enhancing agile software
testing: A hybrid approach with TDD and AI-driven self-
healing tests. International Journal of Information
Technology and Computer Engineering, 2020, 8(2).

79. Chen C, Xing Z, Liu Y & Xiong KOL. Mining likely
analogical apis across third-party libraries via large-scale

unsupervised api semantics embedding. IEEE
Transactions on Software Engineering. 2019; 47(3):432-
447.

80. Musham NK & Bharathidasan S. Lightweight deep
learning for efficient test case prioritization in software
testing using MobileNet & TinyBERT. International
Journal of Information Technology and Computer
Engineering, 2020, 8(1).

81. Yu C, Zhao M, Song M, Wang Y, Li F, Han R & Chang
CI. Hyperspectral image classification method based on
CNN architecture embedding with hashing semantic
feature. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing. 2019;
12(6):1866-1881.

https://academicjournal.ijraw.com/

