
 

< 38 > *Corresponding Author: Durga Praveen Deevi 

 
 
 

 
 
 
 

Leveraging Neural Code Embeddings and Hybrid Static-Dynamic 
Analysis for Enhanced Vulnerability Detection 

*1Durga Praveen Deevi and 2Thanjaivadivel M 
*1O2 Technologies Inc, California, USA. 

2Associate Professor, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Tamil Nadu, Chennai, India. 

 
 

Abstract 
Now classic code analysis methods are already obsolete with respect to detecting serious hidden or deeply-rooted vulnerabilities. As software 
complexity keeps going up, any escalation in cyber-attacks is threatening to demand more sophisticated methods of detection. This paper 
describes a new combined static and dynamic analysis approach with a convolutional neural network to enhance vulnerability discovery while 
constructing neural code embeddings. It is capable of transforming source code into two-dimensional pictures so that the intricate features are 
picked up by the CNN, something a conventional model would find difficult to analyse. This dual use of both static and dynamic analyses tends 
to fortify the model further in discovering the secretive and less apparent security flaws in the system. Data completeness and improvement for 
model reliability were ensured with preprocessing tools such as K-Nearest Neighbours (KNN) imputation and Z-score normalization. They fill 
in the gaps in the data and standardize input data for fast and consistent training. With that, the proposed model offers an overall accuracy of 
98.5%, well above that of the conventional methods. An effective model of this nature therefore stands to be a useful and efficient approach to 
modern secure software development pipelines when it proves highest in scalability and detection rate. This deep learning framework thus attests 
to the efficacy of advanced artificial intelligence toward securing software with the smartly and automatically analysed code. 
 
Keywords: Convolutional neural network, software vulnerability detection, automated code analysis, code preprocessing, k-nearest neighbours, 
hybrid analysis. 

 
 

1. Introduction 
The task thrives in a hotter spotlight due to the rising 
largeness and complexity of modern software systems and 
consequently the endeavour of ensuring their security is 
becoming more and more complicated [1] [2]. Many types of 
software development processes exist as systematized 
collections of various operations, functions, procedures and 
various tasks [3]. H Nevertheless, these means typically are 
inefficient when faced with entrenched security loopholes [4]. 
They tend to struggle in handling massive codebases, dealing 
with obfuscated code, or detecting sophisticated evasion 
strategies employed by modern attackers [5] [6]. According to it, 
the critical vulnerabilities, such as the buffer overflow, 
injection attacks and insecure encryption configurations, 
linger on undetected [7] [8]. The inadequacy of existing static 
techniques to address the challenge posed by the evolving 
threat landscape is aptly demonstrated by these limitations 
and the consequent development of another set of adaptive 
and intelligent solutions that strive to keep up with modern 
attack methodologies [9] [10]. The escalating scale and intricacy 
of contemporary software systems have cast a sharper 
spotlight on the daunting challenge of maintaining robust 
security [11] [12]. As software development evolves through 
structured processes comprising numerous interconnected 
tasks, operations, and modules, the risk landscape 
simultaneously expands [13]. Traditional security mechanisms, 
though systematic, often fall short in confronting deeply 
embedded vulnerabilities that can compromise entire systems 

[14] [15]. These conventional methods are frequently 
overwhelmed by the sheer volume of code, obfuscated logic, 
and the sophisticated evasion techniques exploited by modern 
adversaries [16]. As a result, critical threats such as buffer 
overflows, injection flaws, and weak cryptographic 
configurations often remain concealed and unaddressed [17]. 
Static analysis tools, once seen as foundational to 
vulnerability detection, increasingly show their limitations in 
adapting to dynamic and rapidly evolving attack vectors [18] 

[19]. This growing inadequacy underscores the need for more 
intelligent, context-aware, and adaptive approaches capable of 
proactively identifying and mitigating security flaws in real 
time, aligned with the complexity and fluidity of present-day 
software ecosystems [20] [21]. 
Detection of vulnerabilities becomes a multi-pronged 
exercise, which is guided by different considerations, mainly 
inherent program complexities, usage of obfuscation schemes, 
dynamics of arriving zero-day vulnerabilities, and occasional 
false positives [22] [23]. In most cases, scalability is normally 
regarded as one of the weak points associated with classical 
tools, particularly when applied to large-scale software 
systems [24] [25]. In most instances, conventional methods of 
detection are actually rule-based-these approaches rely on 
predefined patterns or known signatures of some explicit 
malicious behaviour [26] [27]. Hence, they may work well in the 
case of known threats, but they firmly lack any adaptation to 
new attack vector [28]. This rigidity thereby impairs their 
functional status in the dynamic threat landscape of now 
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where attackers are forever changing their attack strategies [29] 

[30]. Therefore, there lies a growing necessity for detection 
systems that are intelligent, flexible, and adaptable in real 
time to respond to threats that are new and unseen eats [31]. 
While well on the way to great success in that their intended 
application would be to real threat situation, other methods 
including machine-learning have their own drawbacks [32]. 
Rule-based static analyses and symbolic execution continue to 
be burdened by high rates of false positives, often flagging 
benign code as being vulnerable [33] [34]. On the other hand, 
ML solutions are adaptable and thus find themselves 
frequently constrained by the scaling problems and need for 
huge amounts of labelled data for training [35] [36]. These 
techniques typically depend on manually engineered features 
or historical vulnerability data, which limits their 
effectiveness when dealing with new threats [37]. Ost of these 
techniques are designed using manually engineered features 
or exploit historical vulnerability data, thus limiting their 
effectiveness in the context of emerging threats [38]. These 
limitations create the need for more autonomous and 
generalizable solutions that will efficiently work in different 
software environments [39]. Finally, functional incorporation 
of these advanced systems into the existing development 
workflow will, in all likelihood, also be a technical challenge 
requiring special expertise and infrastructure [40]. 
This study presents a fresh and unique approach that employs 
CNNs for automated vulnerability detection to bridge the gaps 
and drawbacks of older techniques. The proposed framework 
transforms the source code structure into feature maps such 
that the end-user deep learning model can learn complex and 
abstract patterns with time, directly via the data base rather 
than any manual feature engineering. This further makes the 
detection highly efficient as compared to extensive 
dependency on expertise from human minds to reach the same 
reliability. Through learning from the raw structural and 
semantic forms of code, CNN becomes possible to find some 
detectable and previously subtle vulnerabilities. Additionally, 
being adaptable makes it resilient against the threats which 
will evolve and reduces the false positive count, which has 
always been a serious drawback in rule-based systems. There 
is high automation, which supports scalability, making it 
viable for this solution to solve the problems of analysing 
large and complex codebases. Overall, this proposed CNN-
based methodology provides a highly efficient and futuristic 
solution to the most pressing challenges in cybersecurity. 
 
Now, Main Contributions of this Research Paper are: 
• The approach discussed here is CNN based methodology 

which implies that the methodology learns for even 
complex semantic or structural patterns hidden in source 
code to yield an effective detection of vulnerabilities. 

• It makes use of KNN imputation, Z-score normalization, 
and min-max scaling preprocessing techniques to prepare 
a data for being of good quality and consistent. 

• The model integrates functions like pooling, activation 
functions, and classification into convolutional layers, 
hence making model building such as credible and 
automatic process in developing secure software. 

 
The organization of this paper is as follows: Section 2 reviews 
existing vulnerability detection techniques and highlights their 
limitations in identifying complex software flaws. Section 3 
details the proposed CNN-based detection methodology, 
including data collection, preprocessing, and model 
architecture. Section 4 presents experimental results using key 

performance metrics, along with an analysis of the model's 
effectiveness. Finally, Section 5 summarizes the contributions 
of this work and outlines directions for future research aimed 
at improving software security. 
 
2. Literature Review  
IoT-based health framework supports patient monitoring 
through smooth integration with cloud infrastructures. It 
addresses scalability and data quality issues by using k-NN 
for imputing missing values, Z-score normalization, and 
ChaCha20 encryption for secure storage [41]. IoT sensor data 
is pre-processed, encrypted, and stored in the cloud for 
effective management [42]. Performance metrics show 
increasing encryption levels and latency with larger datasets, 
demonstrating the architecture's efficiency for real-time 
healthcare monitoring [43]. A safe document clustering scheme 
for IoT applications integrates Multivariate Quadratic 
Cryptography with Affinity Propagation [44] [45]. The system 
ensures data confidentiality through strong encryption and 
performs adaptive encrypted document clustering [46]. Aimed 
at resolving scalability issues and enhancing clustering 
efficiency while minimizing computational overhead, the 
framework enables secure data sharing in IoT contexts such 
as smart cities and healthcare [47] [48]. Test results show 
improvements in accuracy, security, and performance, making 
it suitable for handling sensitive IoT data [49]. 
The impacts of internet-based finance and cloud computing 
on urban-rural income disparities are examined in the context 
of a growing e-commerce era. Digital finance and 
connectivity are shown to contribute to financial inclusion and 
balanced economic development [50]. Using panel data 
estimation over several years, the study evaluates how digital 
financial services influence income levels and reduce 
interregional income disparities in a rapidly digitizing 
economy [51]. Optimizing cloud computing infrastructure is 
essential for enhancing big data processing performance, 
scalability, efficiency, and cost management [52] [53]. Key 
challenges include security, energy efficiency, resource 
utilization, and system reliability [54]. Solutions such as load 
balancing, auto-scaling, and dynamic resource allocation 
alongside vertical/horizontal scaling and robust security 
measures support enterprise operations [55]. Real-time 
monitoring, automation, and compliance support help reduce 
costs and maintain a strong infrastructure for diverse 
workloads [56]. 
A machine learning-based approach is proposed to improve 
chronic disease management in the elderly, inspired by the 
SURGE-Ahead Project [57]. The focus is on developing 
personalized AI tools for geriatric care, aimed at supporting 
clinical decision-making with real-time patient-specific 
predictions [58]. Techniques such as Support Vector Machines, 
Decision Trees, and Neural Networks complemented by 
preprocessing and feature selection enable effective chronic 
disease prediction and timely healthcare intervention [59]. The 
integration of cloud computing and AI-driven sentiment 
analysis is explored as a transformative force in customer 
relationship management [60]. By analyzing customer 
interactions across multiple channels, AI models classify 
sentiments and predict behaviors, supporting tailored 
communication strategies [61]. The approach aims to boost 
customer satisfaction, engagement, and retention. Cloud 
platforms facilitate scalability and real-time data processing, 
enabling organizations to deliver timely and sentiment-
aligned responses [62]. An AI-driven architecture is introduced 
for secure mHealth systems, combining Hierarchical Identity-
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Based Encryption, Role-Based Access Control, and Secure 
Multi-Party Computation [63]. The framework safeguards data 
sharing through hierarchical encryption and controlled access. 
AI aids in efficient role delegation and secure data processing, 
achieving both security and scalability [64]. This approach 
effectively meets privacy and collaboration needs for 
managing mHealth data securely and efficiently [65]. 
 
2.1. Problem Statement 
The exponential growth of IoT devices, cloud computing 
platforms, and AI-powered applications across domains such 
as healthcare, smart cities, and financial services, the volume 
and sensitivity of data being processed have surged 
dramatically [66]. These systems demand high levels of 
security, scalability, real-time responsiveness, and 
adaptability to evolving threats [67]. Existing frameworks 
attempt to address these requirements through various 
mechanisms such as encryption, clustering algorithms, and 
cloud resource optimization but they often fall short in one 
critical aspect: the ability to detect and mitigate software 
vulnerabilities embedded within the codebases that underpin 
these infrastructures [68] [69]. Vulnerabilities in software, 
especially in large-scale, dynamic, and heterogeneous 
environments, can lead to data breaches, unauthorized access, 
system failures, and severe financial and operational 
repercussions [70]. Traditional static or dynamic analysis tools 
alone are limited by their scope static methods may miss 
runtime issues, while dynamic approaches can be resource-
intensive and incomplete [72]. As systems become more 
complex and interconnected, especially in security-sensitive 
areas like mHealth and smart IoT frameworks, there is a 
pressing need for advanced, intelligent mechanisms capable 
of identifying vulnerabilities with greater precision, context-
awareness, and adaptability to protect both system integrity 
and user trust [72]. 
To effectively confront these emerging challenges, there is a 
growing shift toward hybrid and AI-enhanced vulnerability 
detection techniques that combine the complementary 
strengths of both static and dynamic analysis [73]. One 
promising direction lies in leveraging neural code embeddings 
deep learning-based representations that capture the syntactic 
structure and semantic context of code [74] [75]. These 
embeddings can model intricate code behaviors and patterns, 
enabling more accurate identification of subtle or obfuscated 
vulnerabilities that traditional tools may overlook [76]. When 
integrated with a hybrid static-dynamic analysis framework, 
neural embeddings enhance the system's ability to reason 
about code both at rest and during execution [77] [78]. This 
synergy allows for comprehensive vulnerability detection 
with improved accuracy, scalability, and resilience against 
modern evasion tactics [79]. Such intelligent systems are well-
suited for dynamic environments like cloud-hosted 
applications and real-time IoT systems, where adaptability 
and fast threat response are paramount [80]. Therefore, a robust 
solution that incorporates neural representations of code with 
hybrid analysis techniques holds significant potential to 
transform vulnerability management in contemporary 
software systems [81]. 
To address these issues, the proposed approach Leveraging 
Neural Code Embeddings and Hybrid Static-Dynamic 
Analysis for Enhanced Vulnerability Detection aims to 
improve the accuracy and robustness of identifying software 
vulnerabilities in modern systems. By integrating deep 
learning-based code embeddings with a hybrid analysis 
strategy that combines the strengths of static and dynamic 

techniques, this framework enables more contextual, scalable, 
and precise vulnerability detection. This enhanced detection 
capability supports the secure development and deployment 
of intelligent, cloud-integrated systems, mitigating risks in 
real-time applications such as mHealth, IoT infrastructures, 
and AI-powered services. 
 
3. Proposed Methodology 
The proposed methodology implements a highly capable and 
efficient software vulnerability detection scheme based on 
CNN. The process will begin with a well-labeled collection of 
security vulnerabilities containing both vulnerable and non-
vulnerable samples of code. Preprocessing of data usually 
includes cleaning up data such as the removal of noise and 
inconsistencies, and/or Z-score normalization for the 
standardization of feature values for better performance of the 
model with respect to the training data. After the cleaning 
process, the next stage will transform the cleaned data into a 
two-dimensional format to allow CNN to extract deep 
structural and semantic features from the code. This capability 
allows the detection of complex and latent vulnerabilities, 
which may be lost or overlooked in the traditional techniques. 
The input is classified by the CNN as either being vulnerable 
or non-vulnerable, which is itself an automated, robust, and 
effective solution. The achieved accuracy of the model stands 
at 98.5%, which is much better than that using the 
conventional methods thus making it highly scalable and 
effective in real-world secure software development 
environments. Figure 1 represents the Overall architecture for 
the proposed methodology 
 

 
 

Fig 1: Overall Architecture for Proposed Methodology 
 
3.1. Data Collection 
A detailed Dataset of Security Vulnerabilities makes one 
more acquainted with the changing world of cyber threats. 
The digital world is found necessary with daily routines, and 
now it becomes indispensable for a person to understand 
digital threats. The dataset contains a massive amount of 
information on different known vulnerabilities making 
themselves accessible to his cybersecurity analysts, 
researchers, and data analysts studying its trends and risks 
assessment while developing proactive defences. Looking for 
information on historical trends for making predictive 
modelling of the future threats seems to be possible with this 
dataset that supports decision-making for resilience against 
threats. Propel yourselves at the point of making informed, 
agile decisions while understanding real-world data utilization 
to show vigilance and innovation in the face of constant 
change around protecting systems and networks and sensitive 
data against emerging cyber risk. After collected, pre-
processing takes place applying data cleaning and 
normalization and scaling of the dataset into CNN based 
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vulnerability detection model for making them ready for 
detection boosting-level accuracies. 
 
3.2. Pre-processing 
K-Nearest Neighbours (KNN) Imputation is a method to 
enhance the quality of data by estimating missing values by 
targeting a similar data point, whereas normalization ensures 
that all features are on the same scale. Convolutional layers 
try to extract structural patterns from tokenized code and use 
REL for further improvement of feature learning. Max 
pooling will carry on the task of reducing the complexity of 
the data features, whereas the last fully connected layer will 
classify code either as vulnerable or secure with the help of 
SoftMax. The model operates under the cross-entropy loss 
which helps fine-tune the detection accuracy thereby reducing 
false positives. 
 
i). Data Cleaning: Handling Missing Data Using Mean 

Imputation 
This process resolves the problem of missing values by 
substituting their values with the means of existing values of a 
feature. This maintains uniformity and prevents the model 
from learning erroneous patterns from the data. Mean 
imputation maintains the statistical properties of the dataset. 
This impacts model accuracy and robustness. Thus, for the 
feature vector. Given a feature vector , in 
which some values are removed, mean imputation can be 
computed using Equation (1): 

 
  (1) 

 
Here,  is the total number of samples, and  is the number 
of missing values. Missing values are replaced with the mean 

, maintaining data integrity. M, which includes the indices 
of the non-missing values . The mean of these known 
values is then calculated and used to substitute the missing 
ones, ensuring that data integrity is preserved. 
 
ii). Data Normalization: Min-Max Normalization 
Min-Max normalization scales feature values to a fixed range 
between 0 and 1. This prevents features with larger values 
from dominating those with smaller ranges. It improves 
training speed and convergence for deep learning models. 
Normalization is essential for maintaining balanced feature 
importance. Given a feature vector , each 
value  is transformed using in Equation (2): 

 
  (2) 

 
Here, xi′ is the normalized version of the original data point 
xi. Where and  are the minimum and maximum 
values of the feature vector . This process ensures that all 
values are within the [0, 1] range. This transformation ensures 
all data values are scaled proportionally, preventing features 
with large ranges from dominating others during model 
training. 
 
3.3. Vulnerability Detection using CNN 
The proposed model is implemented in a CNN that seems to 
detect software vulnerabilities from two-dimensional 
representations of the source text. The model extracts 
semantic and syntactic features from the source code using 
convolutional and pooling layers. The network learns to 

recognize a pattern that has an implicit representation of 
security flaws and is often very complex for others to detect 
or use as ground truth to perceive. The learning process is 
completed by exposing the network to labelled data, thus 
allowing it to differentiate accurately between vulnerable and 
non-vulnerable code. Because of its capacity to handle a 
massive amount of data, the method is obviously scalable and 
efficient. In addition, it offers a more accurate detection along 
with automating convenience for its robust functioning. 
 
i). Convolution Layer 
Filters are applied to the symbolic representation of codes by 
various convolutional layers in order to recognize potential 
representative patterns. It recognizes the features. This 
process is useful in enhancing feature extraction and 
contributing to the classification of vulnerability. The 
operation helps to realize an efficient detection of deeply 
hidden structures. The central operation of CNN is 
convolution which extracts the relevant features from its input 
(tokenized code representation). It is mathematically defined 
in Equation (3): 

  
 (3) 

 
Where  input feature map (tokenized code 
representation)  convolution kernel 
(filter)  bias term  output feature ma This 
operation detects key structures such as insecure API calls, 
function misuse, or privilege patterns in source code. 
 
ii). Activation Function (ReLU) 
RELU activation map introduces non-linearity by zeroing 
negative values while retaining positive values, thus enabling 
the network to focus on meaningful patterns and disregard the 
irrelevant noise. This greatly speeds up learning and adds 
another layer of depth to the model's understanding of 
variations. ReLU is simple but powerful. Equation (4): 

  
  (4) 

 
The usage of ReLU is defined as f(x) is equal to x if the input 
value is positive, and 0 if the input value is negative. This 
very simple and powerful transformation brings non-linearity 
into the model such that it can learn complex behaviors in the 
positive parts, holding on to the relevant features and then 
dropping negative noise. This makes the model focus on the 
important parts and not on the irrelevant values. Therefore, 
dimensionality reduction occurs by max pooling while 
retaining the important features. 
 
iii). Pooling Layer (Max Pooling) 
Simplifying data for computations or use thereafter, reduced 
computing power is another outcome of pooling. In addition, 
pooling achieves better generalization and reduced 
overfitting. This process also speeds up the entire model and 
makes it more efficient when it comes to training with the use 
of max pooling, according to Equation (5): 

 
  (5) 

 
In the max pooling step,  represents the maximum value 
selected from a region  of the feature map. This region 
includes nearby elements around position  in the output 
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of the convolution layer . Pooling reduces 
dimensionality and computational load while preserving the 
most prominent features, such as signs of vulnerabilities. 
 
iv). Fully Connected Layer (Classification) 
This layer aggregates the entire set of features extracted 
previously and decides on the final classification. It evaluates 
the probability of each class label by applying the SoftMax 
function. Based on the learned features, the method finally 
determines if the code is vulnerable or secure, which is 
represented by Equation (6): 

 
  (6) 

 
In this formula, the condition software  is the probability 
under which the input belongs to class i, interpolated via the 
SoftMax function with  raw logit or unnormalized score 
class k, with the denominator containing the sum of 
exponentials of the logits for all possible classes. Thus, the 
transition from scores into a probability distribution helps the 
model to classify code as either vulnerable or not. 
 
v). Loss Function (Cross-Entropy Loss) 
Cross-entropy loss measures the discrepancy between true 
and predicted labels. It penalizes wrong predictions more than 
the right ones so as to improve the prediction accuracy of the 
model. During training, the model fits its parameters in such a 
way as to minimize this loss, leading to better classification 
and higher detection accuracy. The equation for optimizing 
the performance of the model using cross-entropy loss is 
expressed as follows in Equation (7): 

 
 (7) 

 
L measures loss on the discrepancy between the observed 
labels  and the predicted probabilities over the N samples. 
Logarithmically speaking, it puts an enormous penalty on the 
majority of wrong predictions. Such situations arise more 
where the model was overly confident but still wrong. This 
loss is hence minimized to maximize the accuracy on 
vulnerabilities during training.  
 
4. Result and Discussion 
This section assesses the performance of the developed deep 
learning model concerning software vulnerability detection 
and provides an overall view of its effectiveness using 
standard evaluation parameters. The model is tested against 
all Accuracy, Precision, Recall, and F1-Score-together 
ensuring the code segments are classified with high reliability. 
When preprocessing techniques were invoked along with the 
CNN architecture, there was a massive change in the 
performance of the experimental model. Such results, indeed, 
indicate not only the robustness of the approach per se but 
also its potential in real-life situations. The following 
subsections shall state the performance of the model and 
compare it with conventional methods to validate the 
strategies concerning overall efficiency and reliability. 
 
4.1. Performances Metrics 
Model evaluation based on established criteria such as 
Accuracy, Precision, Recall, and F1-Score is shown in Figure 
2. The model achieves excellent Accuracy of 98.50%. 
Therefore, in a way, most of the inputs are rightly classified 
by the model. It yields a Precision of 99.10%, almost 100% in 

identifying code segments as being potentially vulnerable, 
which, in turn, would make them true positive. With the 
Recall being at 98.20% for catching most of the real 
vulnerabilities, the model receives high praise. I mean, really, 
F1-Score, which stands up at 98.65%, implies a pretty good 
trade-off especially in Favor of the precision and recall, 
substantiating the power and working capacity of this model 
to detect security weaknesses. Overall, all these results 
substantiate the model's readiness for the practical issue of 
vulnerability detection in a dependable and efficient way. 

 

 
 

Fig 2: Comparison of Model Evaluation Metrics 
 

5. Conclusion 
The recommended approach for this research is predicated on 
CNN, benefiting from its process to develop a robust and 
scalable solution to the software vulnerability detection 
problem through converting the source code into structured 
2D representations for deep semantic and structural feature 
extraction-and this eliminates the need for manual feature 
extraction, thus enhancing the optimization of the detection 
process. CNN unlike the rule-based and symbolic analysis of 
existing approaches can identify complex and dormant 
vulnerabilities at minimal human involvement. Experimental 
results demonstrate that the model exhibits potency, with 
accuracy and precision of up to 98.5% and 99.1%, 
respectively, in identifying vulnerabilities with minimum 
false positives, further attesting to the method's reliability for 
real-world applications and provision of an intelligent 
homemade automated framework to shield the software 
systems against dynamically changing cyber threats. Future 
work may be geared towards the extension of the model by 
complementing it with recurrent neural networks (RNNs) or 
transformer-based architectures to capture long-range 
dependencies in code. Besides, diversity of programming 
languages and vulnerability types can be widened in the 
dataset to appreciate the generalizability and robustness. 
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