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Abstract 
The rise of the Internet of Things (IoT) has significantly increased the generation of sensitive and continuous sensor data, which poses 
significant security challenges when transmitted to the cloud. Cloud computing provides scalable storage and real-time processing solutions for 
such data but introduces concerns related to unauthorized access, data breaches, and system vulnerabilities. This paper proposes a 
comprehensive security framework that ensures the confidentiality, integrity, and availability of IoT sensor data throughout its lifecycle. The 
framework integrates data pre-processing, AES encryption, Intrusion Detection Systems (IDS), secure transmission, and access control 
mechanisms to build a robust defence against cyber threats, enhancing data protection and user trust in IoT-enabled services. The results 
demonstrate significant differences in key generation and encryption times between cryptographic algorithms. RSA-4096 has the longest key 
generation time, taking 3.0 seconds, indicating its computational complexity. The Proposed algorithm, on the other hand, performs faster with a 
key generation time of 0.3 seconds. The Proposed algorithm offers a good balance of speed and security, compared to RSA-4096, which offers 
strong security but comes at a cost. The cloud computing performance metrics demonstrate significant values in Network Bandwidth (Mbps), 
with a range reaching up to 700 Mbps, followed by Throughput (req/sec) at around 500 req/sec, indicating the system’s capability to handle high 
traffic. The Latency (ms), Response Time (ms), and Disk I/O Speed (MB/s) show balanced performance, ensuring quick data transmission and 
efficient storage, confirming the robustness of the proposed methodology for secure and efficient cloud-based data management. 
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1. Introduction 
The rapid proliferation of the Internet of Things (IoT) has 
fundamentally transformed the landscape of data generation, 
resulting in an unprecedented surge in sensor data collected 
from a diverse array of smart devices and interconnected 
environments [1]. These devices continuously monitor and 
capture vital information, spanning domains such as 
healthcare, smart cities, industrial automation, and 
environmental monitoring [2]. Due to the voluminous, 
continuous, and often sensitive nature of this data, cloud 
computing has emerged as the preferred infrastructure for its 
scalable storage capabilities and ability to facilitate near-
instantaneous data processing and analytics [3]. Cloud 
platforms enable centralized management and computational 
resources that far exceed the capacity of individual IoT 
devices, thereby supporting sophisticated data-driven 
decision-making and services [4]. However, the transmission 
and management of IoT sensor data in cloud environments 
introduce significant security challenges that cannot be 
overlooked [5] [6]. The vast and often unprotected nature of IoT 
networks exposes them to threats such as unauthorized access, 
data breaches, man-in-the-middle attacks, and exploitation of 
software and hardware vulnerabilities inherent to both the IoT 
devices and cloud infrastructure [7]. The resource constraints 
typical of IoT devices—including limited processing power, 
memory, and energy—pose additional hurdles in 

implementing robust security protocols locally [8]. Moreover, 
the open and multi-tenant architecture of cloud platforms 
increases the attack surface, making the protection of data 
confidentiality, integrity, and availability throughout its 
lifecycle critically important [9] [10]. 
To address these concerns, it is imperative to develop a 
comprehensive and multilayered security framework that can 
safeguard IoT sensor data from the point of generation 
through transmission, storage, and access [11]. Such a 
framework must integrate several essential components: 
effective data pre-processing to enhance data quality, secure 
data transmission protocols fortified by strong encryption 
standards, real-time intrusion detection systems (IDS) to 
promptly identify malicious activities, and strict access 
control mechanisms that enforce user authentication and 
authorization policies [12]. By incorporating these 
mechanisms, organizations can significantly mitigate cyber 
threats, prevent data leakage, and ensure the trustworthiness 
of IoT-enabled services, which is fundamental for user 
confidence and broader adoption [13]. The proposed 
methodology in this paper outlines the design and 
implementation of a secure and efficient framework tailored 
for the end-to-end management of IoT sensor data within 
cloud ecosystems [14]. Initially, raw data is gathered from 
distributed IoT sensors and undergoes critical pre-processing 
steps such as noise filtering to remove irrelevant or corrupted 
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signals, normalization to scale data uniformly, and timestamp 
alignment to synchronize asynchronous data streams [15]. 
These processes ensure that subsequent analysis and security 
mechanisms operate on high-quality, consistent data [16]. 
Subsequently, a real-time Intrusion Detection System (IDS) 
continuously monitors incoming data streams and system 
behavior to detect anomalies and potential cyber threats, 
enabling proactive response to security incidents [17]. 
Following threat analysis, the data undergoes encryption 
using the Advanced Encryption Standard (AES), a widely 
accepted symmetric-key algorithm known for its strong 
security and efficiency [18]. This step is crucial to maintain the 
confidentiality and integrity of data as it is transmitted over 
potentially insecure networks to the cloud [19]. Within the 
cloud environment, the encrypted data is securely stored using 
robust cloud storage solutions equipped with redundancy and 
fault tolerance [20]. To prevent unauthorized data access or 
manipulation, role-based access control (RBAC) mechanisms 
are enforced, ensuring that only authenticated and authorized 
users or systems can interact with sensitive sensor data [21]. 
This layered approach to security not only reduces system 
vulnerabilities but also enhances overall data governance and 
compliance with regulatory standards [22]. An essential phase 
of the framework involves rigorous evaluation and testing to 
measure the performance, security efficacy, and resilience of 
the implemented system [23]. Performance metrics such as 
encryption and decryption latency, detection accuracy of the 
IDS, and system throughput are analyzed to validate the 
feasibility of deploying the framework in practical IoT-cloud 
settings [24]. The evaluation also ensures that security 
enhancements do not introduce prohibitive overheads or 
degrade the quality of service [25]. 
Despite significant progress in integrating IoT with cloud 
platforms, many existing solutions fall short of providing 
holistic security coverage throughout the data lifecycle [26]. 
Commonly, current systems emphasize securing storage or 
transmission channels independently, neglecting 
comprehensive, end-to-end protection [27]. The 
underutilization of real-time Intrusion Detection Systems 
(IDS) in many frameworks leaves IoT ecosystems vulnerable 
to sophisticated and evolving cyberattacks that can bypass 
static security measures [28]. Moreover, the absence of 
systematic data pre-processing adversely affects data 
consistency, which in turn impairs the accuracy and 
responsiveness of threat detection mechanisms [29]. Traditional 
encryption methods, while robust, often fail to account for the 
computational and energy constraints of IoT devices, resulting 
in performance bottlenecks that limit practical adoption [30]. 
Additionally, inadequate access control policies and weak 
authentication protocols in cloud storage environments expose 
sensitive data to risks of unauthorized access, data leaks, and 
insider threats [31]. These critical shortcomings underscore the 
pressing need for a comprehensive and integrated security 
framework capable of addressing data integrity, 
confidentiality, availability, and real-time threat mitigation 
within IoT-cloud ecosystems [32]. 
In addition to ensuring robust security, the proposed 
framework emphasizes scalability and adaptability to 
accommodate the rapidly evolving landscape of IoT 
deployments and cloud technologies [33]. As the number of 
connected devices and volume of sensor data continue to 
grow exponentially, security solutions must scale efficiently 
without compromising performance or introducing significant 
latency [34]. This requires lightweight encryption and intrusion 
detection algorithms optimized for resource-constrained IoT 

devices, alongside elastic cloud infrastructure capable of 
dynamically allocating resources based on workload demands 
[35]. Furthermore, the framework is designed to be modular 
and extensible, enabling the integration of emerging 
technologies such as machine learning-based anomaly 
detection, blockchain for immutable audit trails, and post-
quantum cryptography to future-proof data protection against 
next-generation threats [36]. By incorporating these forward-
looking features, the framework aims not only to address 
current security challenges but also to provide a resilient 
foundation adaptable to the continuous innovation and 
diversification of IoT ecosystems [37]. 
This paper contributes to the state of the art by proposing a 
novel, layered security framework that addresses these gaps 
through the synergistic integration of data pre-processing, 
intrusion detection, encryption, secure transmission, and fine-
grained access control tailored to the unique constraints and 
requirements of IoT sensor data and cloud computing 
platforms. 
The contribution of the paper is below; 
• The paper proposes a comprehensive security framework 

for managing IoT sensor data in cloud environments, 
integrating data pre-processing, AES encryption, and 
intrusion detection systems (IDS). 

• It addresses challenges related to securing sensitive IoT 
data, ensuring confidentiality, integrity, and availability 
throughout its lifecycle. 

• The methodology emphasizes real-time threat detection 
and secure data transmission and storage, enhancing 
overall system reliability and trust. 

 
2. Literature Survey 
The integration of Wireless Sensor Networks (WSNs) with 
cloud computing has garnered significant attention in recent 
years due to its potential to revolutionize data transmission, 
storage, and processing capabilities across various domains 
[38]. WSNs, composed of spatially distributed sensor nodes, 
are widely used for monitoring physical or environmental 
conditions [39]. However, these networks are inherently 
constrained by limited computational power, restricted energy 
resources, and bandwidth limitations, which pose challenges 
for continuous, reliable data collection and real-time 
processing [40]. Cloud computing, with its virtually unlimited 
scalable resources and advanced data processing capabilities, 
offers an attractive solution to these limitations by offloading 
computationally intensive tasks from sensor nodes to 
powerful cloud servers [41]. Various architectural models have 
been proposed to facilitate fast, secure, and reliable sensor 
data transmission from WSNs to cloud platforms [42]. These 
models aim to optimize the entire data lifecycle—ranging 
from collection, preprocessing, transmission, storage, to 
analytics—thereby enhancing communication speed, reducing 
latency, and strengthening system security through the 
adoption of robust protocols and encryption mechanisms [43]. 
The conceptual framework introduced in this study 
emphasizes the seamless management of sensor data, ensuring 
efficient flow from initial collection at the sensor level to 
sophisticated cloud-level processing and decision-making [44]. 
This approach is particularly critical in industrial applications 
where real-time monitoring of manufacturing equipment is 
essential [45]. In the context of Industry 4.0, characterized by 
smart factories and automation, there is an escalating demand 
for enhanced remote monitoring systems that enable 
predictive maintenance and operational efficiency 
improvements [46]. These systems rely heavily on the effective 
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integration of IoT and cloud technologies to handle large-
scale sensor data in near real-time [47]. However, this 
integration presents substantial challenges, commonly 
referred to as the “4Vs” of big data: volume, velocity, variety, 
and veracity [48]. These factors complicate data management 
due to the massive influx of heterogeneous data types, the 
need for rapid processing, and the necessity to ensure data 
quality and reliability [49]. Additionally, the incorporation of 
domain-specific knowledge into data analytics is critical but 
complex, further amplifying the challenges faced by 
conventional monitoring systems [50]. While traditional 
monitoring approaches are already struggling with these 
issues, the fusion of IoT and cloud computing introduces 
added complexity, particularly regarding infrastructure 
availability, system scalability, and consistent data quality 
assurance [51]. 
To mitigate these challenges, context information 
management has emerged as a pivotal strategy. By leveraging 
contextual data—such as temporal, spatial, and environmental 
factors—the system can make more informed decisions, 
improving the accuracy and relevance of monitoring and 
analytics processes [52]. The paper proposes a conceptual 
context-aware framework designed to integrate IoT and cloud 
computing technologies explicitly to enhance remote 
monitoring services [53]. This framework supports dynamic 
adaptation to changing environmental conditions and user 
requirements, facilitating improved system responsiveness 
and reliability [54]. With the rise of Big Data operations, cloud 
deployment architectures have become increasingly favored 
due to their inherent scalability, flexibility, and cost-
effectiveness [55]. Cloud platforms enable organizations to 
dynamically allocate resources, manage large datasets 
efficiently, and deploy applications with reduced upfront 
infrastructure costs [56]. However, this transition to cloud-
centric data management introduces significant security and 
privacy concerns [57]. As data and applications move beyond 
the physical control of organizations, traditional security 
paradigms become insufficient [58]. Data hosted in multi-
tenant cloud environments is vulnerable to a wide array of 
cyber threats, including unauthorized access, insider attacks, 
data leakage, and compliance violations. Addressing these 
vulnerabilities requires a fundamental rethinking of security 
design principles [59]. 
In response, recent research has proposed a novel security-by-
design framework termed "Big Cloud," which is grounded in 
a systematic security analysis methodology coupled with an 
automated security assessment mechanism [60]. This 
framework guides the integration of security requirements 
early in the design phase of cloud systems, aligning them with 
established best practices and industry standards [61]. By 
embedding security considerations throughout the 
development lifecycle, Big Cloud aims to reduce 
vulnerabilities, improve threat awareness, and facilitate more 
robust security implementations [62]. A practical case study 
deploying an Apache Hadoop stack demonstrated the 
framework’s efficacy by enhancing security awareness among 
developers, shortening design cycles, and identifying both 
strengths and weaknesses of existing Big Cloud security 
practices [63]. The study further highlights persistent 
challenges such as the dynamic nature of threats, the 
complexity of cloud ecosystems, and the need for continuous 
innovation in cloud security solutions [64]. Cloud computing’s 
rapid expansion is fueled by its scalable infrastructure, cost 
efficiency, and flexible service delivery models, including 
Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS), and Software as a Service (SaaS) [65]. Despite these 
advantages, the migration of sensitive organizational data and 
critical applications to cloud platforms raises pressing privacy 
and security issues [66]. New attack vectors continuously 
emerge, challenging the effectiveness of conventional security 
mechanisms such as firewalls, antivirus software, and access 
control policies [67]. Organizations lacking robust, adaptive 
security measures face severe risks, including data breaches 
that can lead to financial loss, regulatory penalties, and 
irreparable reputational damage [68]. 
Emerging technologies and evolving threats continue to shape 
the landscape of IoT and cloud integration, driving the 
development of more sophisticated security solutions [69]. 
Recent trends emphasize the adoption of artificial intelligence 
(AI) and machine learning (ML) techniques to enhance 
anomaly detection, threat prediction, and automated response 
within IoT-cloud ecosystems [70]. These intelligent systems 
can analyze vast streams of sensor data in real time, identify 
subtle patterns indicative of cyberattacks, and adapt 
dynamically to new and unknown threats [71]. Furthermore, 
blockchain technology is gaining traction as a decentralized, 
tamper-resistant ledger for securing IoT data provenance, 
access logs, and device authentication, addressing trust and 
transparency challenges inherent in distributed environments 
[72]. Edge and fog computing paradigms are also becoming 
integral by enabling data processing closer to the source, 
reducing latency, and alleviating bandwidth constraints while 
providing additional layers of security through localized 
analytics and policy enforcement [73]. Despite these 
advancements, challenges remain in standardizing security 
protocols, ensuring interoperability among heterogeneous 
devices, and balancing the trade-offs between security, 
privacy, and resource consumption [74]. Future research is 
poised to focus on developing unified frameworks that 
holistically integrate these technologies, fostering resilient, 
scalable, and secure IoT-cloud infrastructures that can meet 
the demands of increasingly complex and mission-critical 
applications [75]. 
To confront these risks, comprehensive security and 
management frameworks tailored for cloud environments 
have been developed. One such framework identifies the key 
threats and vulnerabilities specific to cloud-hosted data and 
applications and proposes a layered security architecture to 
mitigate these risks effectively. Implemented in virtualized 
cloud environments using platforms such as VMware ESXi-6 
and vCloud-6, this framework emphasizes the enforcement of 
data integrity, confidentiality, and availability through 
combined technical, administrative, and procedural controls. 
By employing virtualization security best practices, secure 
hypervisor configurations, network segmentation, encryption, 
and continuous monitoring, the framework enhances the 
overall resilience of cloud-based systems against internal and 
external threats. Such solutions are critical for organizations 
aiming to securely harness cloud computing benefits while 
maintaining compliance with regulatory standards and 
safeguarding stakeholder trust. 
 
3. Problem Statement 
The rapid growth of IoT devices has led to an enormous 
amount of sensor-generated data, which is highly vulnerable 
to cyber threats such as unauthorized access, data breaches, 
and malicious attacks. Traditional security measures often fall 
short due to the diverse nature of IoT devices and their limited 
computing power [76]. As IoT data is continuously transmitted 
to cloud storage, it becomes susceptible to man-in-the-middle 
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attacks, data interception, and tampering [77]. Additionally, 
poor data pre-processing can lead to inconsistencies, reducing 
the accuracy of security mechanisms [78]. One of the major 
challenges in IoT security is the lack of an efficient Intrusion 
Detection System (IDS), which can result in delayed or 
missed detection of threats [79]. Moreover, unencrypted data 
transmission makes IoT networks an easy target for 
cybercriminals [80]. Without strong encryption and secure 
access control mechanisms, sensitive IoT data remains at risk 
[81]. To address these challenges, a secure IoT data 
management framework is needed to ensure data 
confidentiality, integrity, and secure storage in cloud 
environments [82]. The proposed framework includes data pre-
processing techniques like noise filtering, normalization, and 
timestamp alignment to improve data quality. It also 
integrates an Intrusion Detection System (IDS) to identify and 
prevent potential threats. AES encryption is applied to protect 
data before transmission to the cloud, ensuring secure 
communication. Additionally, strict access control 
mechanisms are enforced to prevent unauthorized access. By 
implementing end-to-end security measures from data 
collection to cloud storage, this framework minimizes security 
risks and enhances IoT data protection. The use of advanced 
security techniques, encryption, and continuous evaluation 
ensures a robust and reliable system for managing IoT sensor 
data securely in cloud computing environments. 
 

4. Proposed Methodology 
The proposed methodology begins with the collection of data 
from IoT sensors, forming the IoT Sensor Dataset. This raw 
data undergoes several pre-processing steps to ensure its 
quality and consistency. The first step is Noise Filtering, 
which removes any unwanted noise from the data. Next, 
Normalization is applied to standardize the data, ensuring it is 
on a consistent scale. The final pre-processing step is 
Timestamp Alignment, which ensures that all sensor data is 
synchronized properly. Once pre-processed, the data is 
analysed by an Intrusion Detection System (IDS). The IDS 
scans the data for any potential threats or malicious activities 
that could compromise the system's security. After analysis, 
the data undergoes AES Encryption, which encrypts the data 
to protect its confidentiality and integrity. The encrypted data 
is then securely transmitted to the Cloud, ensuring that no 
unauthorized access occurs during transmission. Upon 
reaching the cloud, the data is stored in Cloud Storage. To 
ensure that only authorized users can access the data, 
appropriate Access Control measures are implemented. 
Finally, the entire system undergoes Evaluation. This step 
assesses the effectiveness of the security measures, including 
the IDS and encryption processes. The evaluation helps 
ensure that the system functions as intended, with all data 
securely stored and transmitted, and potential threats 
successfully detected. The whole workflow is illustrated in 
Figure 1. 

 

 
 

Fig 1: Overall architecture of the proposed method 
 

4.1. Dataset Collection 
The dataset collection begins with the acquisition of IoT 
Sensor Data, which contains real-time readings from various 
IoT devices. These sensors monitor different environmental 
and system parameters, such as temperature, humidity, 
pressure, etc. The raw data collected from these IoT sensors 
typically requires further pre-processing to ensure its quality 
and suitability for subsequent analysis. 
 
4.2. Pre-processing 
The pre-processing phase involves preparing the raw IoT 
sensor data for analysis. This begins with Noise Filtering, 
where irrelevant or erroneous data caused by sensor 
malfunctions or environmental disturbances is removed to 
ensure the data's validity. Afterward, Normalization is applied 
to standardize the data, bringing all values to a consistent 
scale, preventing any feature from disproportionately 
influencing the analysis. Lastly, Timestamp Alignment is 
performed to synchronize the data collected from different 
sensors, ensuring all data points are aligned on a unified time 
scale for accurate comparison and analysis. These steps are 

crucial for ensuring data quality and consistency before it is 
passed to the Intrusion Detection System (IDS) and other 
stages of processing. 
 
4.3. Noise Filtering 
Noise filtering removes irrelevant or erroneous data that may 
distort the analysis. This can include sensor malfunctions or 
environmental disturbances. The goal is to retain only clean, 
valid data for further processing. A common method for noise 
filtering is the Moving Average Filter, expressed as: 

 
  (1) 

 
Where y(t)y(t)y(t) is the filtered value at time t, x The raw 
data, and N is the number of data points used for averaging. 
 
4.4. Normalization 
Normalization scales the data to a common range, ensuring all 
features contribute equally. This is especially useful when 
combining data from sensors with different units. A common 
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formula is min-max normalization: 
 

=   (2) 

 
Where xxx is the original value,  Is the normalized 
value, and min(x) and max(x) are the minimum and maximum 
values in the dataset. 
 
4.5. Timestamp Alignment 
Timestamp alignment synchronizes data from multiple 
sensors to the same time scale, ensuring accurate comparison 
and analysis. A basic formula for linear interpolation is: 

 
)+ .   (3) 

 
Where x(t) is the interpolated value at time t, x(t0) and x(t1) 
are values at times t0 and t1, respectively. 
 
4.6. Intrusion Detection System 
An Intrusion Detection System (IDS) is a security mechanism 
that monitors network traffic and system activities to detect 
unauthorized access and cyber threats in IoT-cloud 
environments. It identifies suspicious patterns, anomalies, and 
attacks like malware injection, DDoS, and unauthorized API 
requests. IDS is classified into Network-based IDS (NIDS), 
which analyzes network traffic, and Host-based IDS (HIDS), 
which monitors activities on individual devices or servers. 
Modern IDS solutions integrate machine learning (ML) and 
artificial intelligence (AI) to detect zero-day attacks and 
evolving threats. Once an intrusion is detected, IDS triggers 
alerts and can collaborate with encryption techniques like 
AES (Advanced Encryption Standard) to enhance data 
security. Cloud service providers like AWS, Google Cloud, 
and Microsoft Azure offer built-in IDS solutions such as 
AWS Guard Duty, Google Security Command Centre, and 
Azure Security Center. IDS ensures data integrity, 
confidentiality, and compliance with regulations like GDPR 
and HIPAA. It enhances the security of IoT-cloud systems by 
preventing unauthorized data access and mitigating security 
breaches. IDS works alongside firewalls, encryption, and 
authentication mechanisms to provide a robust security 
framework. Its deployment in cloud-based environments is 
essential for securing sensitive IoT sensor data. The 
architecture of intrusion detection system is illustrated in 
Figure 2. 
 

 
 

Fig 2: Intrusion Detection System (IDS) Model architecture 
 
4.7. AES – Encryption 
AES Encryption (Advanced Encryption Standard) is a widely 

used symmetric encryption algorithm designed for secure data 
transmission and storage. It operates on fixed block sizes of 
128 bits and supports key lengths of 128, 192, or 256 bits, 
ensuring robust security. AES follows a substitution-
permutation network (SPN) structure, consisting of multiple 
rounds of transformations, including Sub Bytes, Shift Rows, 
Mix Columns, and Arounder operations. It is resistant to 
brute-force attacks due to its complex key expansion process. 
In IoT-cloud environments, AES encryption safeguards 
sensor data during transmission and storage, preventing 
unauthorized access and data breaches. It is commonly used 
in TLS (Transport Layer Security) protocols to establish 
secure cloud connections. Cloud providers such as AWS, 
Azure, and Google Cloud integrate AES-based encryption in 
their storage and security services. AES enhances data 
confidentiality, ensuring that only authorized entities can 
decrypt sensitive IoT data. It is an essential security 
mechanism in Intrusion Detection Systems (IDS) to maintain 
data integrity and protect against cyber threats. 
 
4.8. Google Cloud Platform (GCP) 
Google Cloud Platform (GCP) is a comprehensive suite of 
cloud computing services provided by Google, offering secure 
and scalable infrastructure for data storage, computation, and 
machine learning applications. It provides compute power 
(Google Compute Engine, Kubernetes Engine), storage 
solutions (Cloud Storage, Big Query), networking (Cloud 
VPN, Load Balancing), and AI/ML services (Vertex AI, 
TensorFlow Cloud) to support various workloads. GCP 
ensures high security through AES-256 encryption, IAM 
(Identity and Access Management), and VPC Service 
Controls to protect sensitive IoT sensor data. Its Cloud IoT 
Core service enables seamless integration of IoT devices for 
real-time data processing and analytics. GCP also offers 
Intrusion Detection and Prevention Systems (IDPS) through 
the Security Command Centre, providing advanced 
monitoring against cyber threats. With global data centres and 
auto-scaling capabilities, GCP is ideal for managing large-
scale IoT data securely. It also complies with HIPAA, GDPR, 
and ISO/IEC security standards, making it a preferred choice 
for cloud-based IoT applications in healthcare, finance, and 
industrial automation. 
 
5. Dataset Description 
An IoT dataset for Intrusion Detection Systems (IDS) 
typically consists of network traffic and device activity logs 
collected from various IoT environments, such as smart 
homes, healthcare devices, and industrial IoT networks. The 
dataset includes features such as timestamp, source and 
destination IP addresses, protocol types (TCP, UDP, ICMP), 
packet sizes, and payload data, helping in identifying 
malicious activities. It often contains both normal and attack 
traffic, categorized into different intrusion types like DoS 
(Denial of Service), Man-in-the-Middle (MITM), data 
injection, botnet attacks, and scanning attacks. Some datasets 
also incorporate device behaviour metrics, such as CPU 
usage, memory consumption, and command execution logs, to 
detect anomalies at the device level. Publicly available 
datasets, such as NSL-KDD, UNSW-NB15, Bot-IoT, and N-
BaIoT, serve as benchmarks for IDS research, offering 
labelled data with attack and normal instances. These datasets 
enable the training and evaluation of machine learning 
models, deep learning-based IDS, and AI-driven threat 
detection mechanisms. By analysing such datasets, 
researchers and security experts can improve real-time 
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intrusion detection, anomaly detection accuracy, and cyber 
defence strategies for IoT ecosystems. 
Dataset Link: 
https://www.kaggle.com/datasets/azalhowaide/iot-dataset-for-
intrusion-detection-systems-ids 
 
6. Result and Discussion 
The proposed methodology outlines a comprehensive 
approach to secure IoT sensor data management, starting with 
data collection and pre-processing steps such as noise 
filtering, normalization, and timestamp alignment to ensure 
data consistency and quality. The application of an Intrusion 

Detection System (IDS) helps identify and mitigate potential 
threats in real time, enhancing the security of the data. AES 
encryption is then applied to protect the data’s confidentiality 
and integrity before secure transmission to the cloud. Once 
stored in cloud storage, access control measures prevent 
unauthorized access, safeguarding the data further. The 
system’s effectiveness is evaluated through a thorough 
assessment of the security measures, including the 
performance of the IDS and encryption mechanisms. This 
ensures the system operates as intended, with secure data 
storage, transmission, and threat detection. 

 

 
 

Fig 3: Encryption algorithms 
 

Figure 3 shows the comparison of the key generation and 
encryption times for four cryptographic algorithms: Proposed, 
RSA-4096, ChaCha20, and ECC-256. The Proposed 
algorithm demonstrates the fastest performance in both key 
generation and encryption, making it highly efficient for real-
time applications. RSA-4096 shows significantly longer key 
generation times, reflecting its computational complexity, 

while its encryption time remains moderate. ChaCha20 is 
exceptionally fast, with very low-key generation and 
encryption times, making it ideal for IoT and mobile 
environments. ECC-256 provides a good balance of 
performance and security, with low key generation and 
encryption times, suitable for secure applications requiring 
efficiency. 

 

 
 

Fig 4: Performance metrics for cloud computing 
 

Figure 4 represents various cloud computing performance 
metrics, with Network Bandwidth (Mbps) having the highest 

value, indicating its importance in determining the overall 
data transfer speed in cloud environments. Throughput 
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(req/sec) follows closely, showcasing the system's capability 
to handle a high number of requests per second. Response 
Time (ms) and CPU Utilization (%) are also significant, 
reflecting the system's efficiency in processing tasks and the 
demand on computational resources. Disk I/O Speed (MB/s) 
and Memory Utilization (%) provide insights into storage 
performance and how efficiently the system utilizes available 
memory. Lastly, Latency (ms), though relatively lower in 
value, is crucial for ensuring quick response times in real-time 
applications. 
 
7. Conclusion 
The proposed security framework offers a holistic approach to 
managing IoT sensor data securely in cloud environments. By 
integrating multiple security measures such as noise filtering, 
normalization, timestamp alignment, AES encryption, and 
IDS, the framework ensures data confidentiality and integrity 
while addressing potential threats in real-time. It provides an 
effective solution to the challenges of secure data 
transmission, storage, and access control in IoT-cloud 
systems. The evaluation of the framework confirms its 
reliability and effectiveness in maintaining the security of 
sensitive data. This work highlights the importance of 
comprehensive security mechanisms and provides a 
foundation for further research and improvement in the field 
of IoT data security. 
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